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Introduction 

A novel imaging technology, scanning microwave-induced-acoustic tomography, will be 
developed for breast imaging. X-ray mammography and ultrasonography are the current clinical 
tools for breast-cancer screening and detection. Mammography is the "gold standard", however, 
uses ionizing radiation and has difficulties imaging pre-menopausal breasts, which are 
radiographically dense. Ultrasonography is an adjunct tool to x-ray mammography and cannot 
detect many of the nonpalpable tumors. The cure rate of breast cancers is improved if they are 
detected early. To provide a new non-invasive, non-ionizing diagnostic tool for detection of 
early breast cancers, we will develop real-time microwave-induced-acoustic tomography for 
breast imaging. Microwave-induced-acoustic tomography is based on the photoacoustic effect, 
generation of acoustic wave by deposition of short-pulse electromagnetic energy safely into 
biological tissues. The microwave for this technology is short-pulsed, and its power is within the 
IEEE safety limits. The microwave-induced acoustic wave is then detected with an ultrasonic 
detector for imaging. The contrast between tumors and normal tissues in the microwave regime 
is significantly better than other imaging modalities. Cancerous breast tissues are found to be 2-5 
times more strongly absorbing than surrounding normal breast tissues in the microwave, which 
has been attributed to an increase in bound water and sodium within malignant cells. However, 
pure-microwave imaging is fundamentally limited to poor resolution (on the order of 10 mm) 
because of the large wavelength of microwave. Ultrasonic imaging has good resolution (on the 
order of 1 mm) but has a poor contrast between tumors and normal tissues. Microwave-induced- 
acoustic tomography combines the contrast advantage of pure-microwave imaging and the 
resolution advantage of pure-ultrasonic imaging, therefore, has the potential for detection of 
early breast cancers and for assessing and monitoring treatments as well. 



Body 

In this section, we present our study of pulsed-microwave-induced thermoacoustic tomography 
in biological tissues. A short-pulsed microwave source was used to irradiate the tissue samples, 
and the thermoacoustic waves excited by thermoelastic expansion were then measured by a 
wide-band ultrasonic transducer along a circular path that encloses the sample under study. The 
acquired data were then used to reconstruct the microwave absorption distribution. Both an 
exact reconstruction solution and an approximate modified backprojection algorithm were 
derived. Experiments demonstrated that the images calculated by the backprojection method 
agreed with the original samples very well, and the spatial resolution in reconstruction was as 
good as 0.5 millimeters. 

Introduction to thermoacoustic tomography 
In thermoacoustic tomography, a short-pulsed microwave source is used to irradiate the tissue. 
Absorbed microwave energy causes thermoelastic expansion and radiates thermoacoustic waves 
from within the irradiate tissue. The relatively long wavelength of the microwave, e.g., ~3 cm at 
3 GHz in tissues, serves to illuminate the tissue homogeneously. The microwave heating must 
be rapid to produce thermoacoustics waves; in other words, static temperature distribution or 
slow heating cannot produce thermoacoustic waves. A wide-band ultrasonic transducer can then 
be employed to acquire the thermoacoustic signals excited by thermoelastic expansion, which 
carries the microwave absorption property of the tissue. The ultrasonic transducer is very 
sensitive in detecting small vibrations from an object that are caused by weak energy absorption. 

The key problem with this technique is how to determine the microwave absorption 
distribution from the measured data, i.e., how to map the inhomogeneity of the tissue. One 
approach is to use focused ultrasonic transducers to localize the thermoacoustic sources in linear 
or sector scans and then construct the images directly from the data as is often done in pulse- 
echo ultrasonography. An alternative method is to use wide-band unidirectional point detectors 
to acquire thermoacoustic data and then reconstruct the microwave absorption distribution. To 
date, we have not seen an exact inverse solution for this specific problem, although some 
researchers have arrived at approximate reconstruction algorithms, such as the weighted delay- 
and-sum method, the optimal statistical approach, and the Radon transform in far field 
approximation. 

Based on spherical harmonic functions, we first deduced an exact solution of the problem 
in the three-dimensional case, which can be carried out in the frequency domain. We assume 
that the wide-band unidirectional ultrasonic transducer is set on a spherical surface, which 
encloses the sample under investigation. The data acquired from different directions are 
sufficient to allow us to reconstruct the microwave absorption distribution. In our case, the 
diameter of the sphere of detection is much larger than the ultrasonic wavelength. Next, an 
approximate algorithm is deduced, which is a modified backprojection of a quantity related with 
the thermoacoustic pressure. This approximate algorithm can be carried out in the time domain 
and is much faster than the exact solution. We have also tested a set of tissue samples. These 
experiments demonstrate that the images calculated by the modified backprojection method 
agree with the original samples very well.   Moreover, the images have both the high contrast 



associated with pure-microwave imaging and the 0.5-millimeter spatial resolution associated 
with pure-ultrasound imaging. 

Theory of thermoacoustic tomography 
Fundamentals ofthermoacoustics 

Thermoacoustic theory has been discussed in many literature reviews such as. Here, we briefly 
review only the fundamental equations.   If the microwave pumping pulse duration is much 
shorter than the thermal diffusion time, thermal diffusion can be neglected; consequently, the 
thermal equation becomes 

pCp2-T(r,t) = H(r,t), (1) 
dt 

where pis the density, Cp is the specific heat, T(r,t) is the temperature rise due to the energy 

pumping pulse, and H{r,t) is the heating function defined as the thermal energy per time and 
volume deposited by the energy source. We are interested in tissue with inhomogeneous 
microwave absorption but a homogeneous acoustic property. The two basic acoustic generation 
equations in a homogeneous medium are the linear inviscid force equation 

i! 
dt2 

and the expansion equation 

p^ju(jr,t) = -Wp(r,t) (2) 

V-u(r,0 = -^# + yoT(r,0 (3) 
pc 

where ß  is the isobaric volume expansion coefficient, eis the sound speed, u(r,0 is the 
acoustic displacement and p(r,t) is the acoustic pressure. 

Combining the above three equations, the pressure p(r,t) produced by the heat source 
H(r,t) obeys the following equation 

c2dtlPK,)       Cdf 
V2p(r,t)-^—p(r,t) = -^--H(r,t). (4) 

Jp 

The above equation is a typical scalar Helmholtz equation. The solutions based on Green's 
function can be found in the literature of physics or mathematics. A general form can be 
expressed as 

ß    fffrfV dH(r',t') 
*-0-lZrl!h AnCp 

JJJ|r-r'|      dt' 
(5) 

r-r 
t=t->—l 

The heating function can be written as the product of a spatial absorption function and a 
temporal illumination function: 

H(r,t) = A(r)I(t). (6) 
Thus, p(r,t)cm be expressed as 

^•')=^MraW(°- (7) 
p 



Exact reconstruction theory 
We first solve the problem where the pulse pumping is a Dirac delta function as 

I(t) = J0S(t). (8) 

Suppose the detection point on the spherical surface r = r0, which encloses the sample (Fig. 1). 

By dropping the primes, the pressure equation may be written as 
r — r 

p(r0,t) = nllld3rA(r) c 
JJJ An\rn-r\ 

(9) 

ßi where t] = -^-2-. The inverse problem is to reconstruct the absorption distribution A(r) from a 

set of data p(r0,t) measured at position r0. Taking the Fourier transform on variable t of the 

above equation and denoting k = —, we get 
c 

p(r0,co) = -iaV\\\dlrA{r)^ptzA, JJJ 4^|r0-r| 

where following Fourier transform pair exists: 
+00 

p(r0, cd) = jp(r0, t) exp(icot)dt, 
—00 

+00 

p(r0,t) = — jp(r0,a>)exp(-iax)d(B. 

(10) 

(11) 

(12) 

The exact inverse solution to the pressure equation (Eq. 9) can be derived on the basis of the 
spherical harmonic function:  

*r> = 4^jfo°i^(r°'^ fo    K\K) 
(13) 

Transducer where n-r/r, n0 = r0 /r0, _/,(•) and 

hjl)0   are the spherical Bessel and 
Hankel functions, respectively; P/() 
represents Legendre polynomial. This 
inverse solution involves summation 
of a series and may take much time to 
compute. Therefore, it is desirable to 
further simplify the solution. 

Modified backprorection 
In the experiments, the detection 
radius r0 is much larger than the wavelengths of the thermoacoustic waves that are useful for 
imaging. Because the low-frequency components of the thermoacoustic signal do not 
significantly contribute to the spatial resolution, they can be removed by a filter. Therefore, we 

Fig. 1. Acoustic 
detection scheme. 
The ultrasonic 
transducer at 
position r0 records 
the thermoacoustic 
signals on a 
spherical surface 
with radius Ir-rJ. 



can assume \k\r0 »1 and use the asymptotic form of the Hankel function to simplify the above 

exact inverse solution. The following two identities are involved: 
exp(-zfc|r0 - r|) _-ik 

An r0 - r 4?r ^ 

When \k\r0 » 1, ^(frb)' 
1 

h(:\kr0) 

1 ( 

K(kr0f 
+ 0 1 Y\ 

(^o)4 

(14) 

(15) 

where h}2)(-) is the spherical Hankel function of the second kind.   After some mathematical 

operations, the approximate inverse solution becomes 

A(r) = - 
Inrjc £ 

J/dn0 
1     dp(r0,t) 

ro~r dt 
(16) 

ie., 

^>-2SFjK 
ldp(r0,t) 

dt 

The above equation shows that the absorption distribution can be calculated by means of 

backprojection of the quantity - 
ldp(r0,t) 

dt 
instead of the acoustic pressure itself.   This 

approximate algorithm involves less computing time than the exact inverse solution. 
For initial investigations, we reconstruct individual cross sections of samples. In these 

cases, the backprojection is carried out in a circle around the cross sections, and the approximate 
inverse solution can be simplified as 

A(r) = 
nrjc 

jd<p0- 
ldp(r0,t) 

dt 
(18) 

Experimental method of thermoacoustic tomography 
Experimental setup 

Fig. 2 shows the experimental setup. A plexiglass container is filled with mineral oil. A rotation 
stage and an unfocused ultrasonic transducer are immersed inside it in the same x-y plane. The 
slice sample can be put in the rotation stage horizontally. The transducer points horizontally to 
the rotation center and detects the acoustic signal from the sample. A step motor directly drives 
the rotation stage while the transducer is fixed. Obviously, this is equivalent to having a 
transducer rotationally scanning the sample. The transducer (V323, Panametrics) has a central 
frequency of 2.25 MHz and a diameter of 6 mm. 

The microwave pulses are transmitted from a 3-GHz microwave generator with a energy 
of 10 mJ/pulse and a pulse width of 0.5 us. A function generator (Protek, B-180) is used to 
trigger the microwave generator, control its pulse repetition frequency, and synchronize the 
oscilloscope sampling. Microwave energy is delivered to the sample from below by a 
rectangular waveguide with a cross section of 72 mm x 34 mm. 



A personal computer is used to control the step motor in rotating the sample. The signal 
from the transducer is first amplified through a pulse amplifier, then recorded and averaged 200 
times by an oscilloscope (TDS640A, Tektronix), and finally transferred to a personal computer 
for imaging. 

Fig. 2. Experimental setup 
Lastly, we want to point out that, in our experiments, the distance r0 between the rotation 

center and the surface of the transducer is 4.3 cm. In the frequency domain (60 KHz-1.8 MHz), 
\k\r0 =2m0f/c with 1.5 mm/us, we get 10 < |Är|r0 < 330.    Therefore, the required condition 

|&|r0 »1 for the modified backprojection algorithm is satisfied. 

Technical consideration 
The ultrasonic transducer is not a real point detector. For simplicity, we can ignore its size if we 
put it far away from the sample. However, we still have to consider the impulse response R(t) 
of the transducer and the pumping duration I(t) of the microwave pulse. In general, the 
measured piezoelectric signal can be written as a convolution: 

S(r0,t) = p(r0,t)*I(t)*R(t), (19) 

where p(r0,t) is the thermoacoustic signal with delta-pulse microwave pumping. In the 
frequency domain, the above equation can be written as 

S(r0 .a) = p(r0, G))/((o)i?(co), (20) 

where 

Therefore, 

I((o) = \l(t) exp(ia>t)dt, 
—00 

+00 

R((Q)= JR(t)exp(i(ot)dt. 
—CO 

-^ °'     can be calculated by an inverse Fourier transformation, 
dt 

(21) 

(22) 



ty(r0,t) 
dt 

= FFT 

1 
9-w   J 

\-icoS{Y0,(o) 

{ I(a>)R(a>) 

-icoS(r0,co) 

F(a>)\ 

(23) 

F(o) exp(-ia>t)dt 
2* _i I(a)R(co) 

where F(<y) is a wide band-pass filter, which is used to eliminate the noise at high frequencies 

as well as the low frequency component to guarantee the condition \k\r0 »1 for the modified 

backprojection. 
In our experiments, I(t) is approximately a rectangular function with duration r = 0.5 us. 

The ultrasonic transducer is of the videoscan type with a central frequency fo = 2.25 MHz. The 
generated thermoacoustic signal mainly exists in a frequency range below 1.8 MHz. Therefore, 
a band-pass filter F{co) may be employed in data processing, which lets only the signal in the 
range between 60 KHz and 1.8 MHz pass through. 

Results and discussion of thermoacoustic tomography 
Imase contrast 

Image contrast is an important index for biological imaging. Fig. 3(a) shows a tested sample, 
which was photographed after the experiment. The sample was made according to the following 
procedure. First, we cut a thin piece of homogeneous pork fat tissue and shaped it arbitrarily to 
form a base. Its thickness is 5 mm and its maximum diameter is 4 cm. Then we used different 
screwdrivers to carefully make two pairs of holes that were approximately 4 mm and 6 mm in 
diameter, respectively. Finally, one big and one small hole on the left side was filled with pork 
muscle, while the big and small hole on the right side were filled with pork fat of the same type 
as that which made up the base. 

Fig. 3. (a) Photograph of 
the cross-section of a tissue 
sample; (b) Reconstructed 
image. 
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In the experiment, the transducer rotationally scanned the sample from 0 to 360 degrees 
with a step size of 2.25 degrees. We used the 160 series of data to calculate the image by our 
modified backprojection method. 
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The reconstructed image is shown in Fig. 3(b). The outline and size of the fat base as 
well as the sizes and locations of the two muscle pieces are in good agreement with the original 
sample in Fig. 3(a). The high contrast is due to the low microwave absorption capacity of fat 
and the high absorption capacity of muscle: at 3 GHz, the penetration depth for muscle and fat 
are 1.2 cm and 9 cm, respectively. The two pieces of fat are not visible in the image Fig. 3(b), 
which means the minute mechanical discontinuity between the boundaries of muscle and fat does 
not contribute much to the thermoacoustic signal. On the contrary, the discontinuity improves 
the strength of the echo sounds in pure-ultrasound imaging. 

Spatial resolution 
Spatial resolution is another important index for biological imaging. We used samples with a set 
of small thermoacoustic sources to test the resolution. One tested sample is shown in Fig. 4(a), 
which was also photographed after the experiment was completed.  

Fat 

Gelatin 

(a) 

[i111[ii i■ |■ ii i|iiti|iii11ii111iiii |ii1111f 

26  27  28 29 30  31   32  33  34 
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Fig. 4. (a) Photograph of the cross-section of 
a tissue sample; (b) Reconstructed image; (c) 
Compare a line profile (solid curve) of the 
reconstructed image (b) at x = 27.45 mm and 
the corresponding grayscale profile (dashed 
curve) of the photograph (a). 

The sample was made according to the following procedure. First, we cut a thin piece of 
homogeneous pork fat tissue and made it into an arbitrary shape. Its thickness was 5 mm with a 
maximum diameter of 4 cm. Then we used a small screwdriver to carefully make a set of small 
holes about 2 mm in diameter. In the meantime, we prepared a hot solution with 5% gelatin, 
0.8% salt and a drop of dark ink (to improve the photographic properties of the sample). Next, 
we used an injector to inject a drop of the gelatin solution into each small hole and subsequently 
blew out the air to make good coupling between the gelatin solution and the fat tissue. After 
being cooled in room temperature for about 15 minutes, the gelatin solution was solidified. 

11 



During the experiment, the transducer also rotationally scanned the sample from 0 to 360 
degrees with a step size of 2.25 degrees. 

The reconstructed image produced by our modified backprojection method is shown in 
Fig. 4(b), which agrees with the original sample very well. In particular, the relative locations 
and sizes of those small thermoacoustic sources are clearly resolved and perfectly match the 
original ones. Fig. 4(c) shows a reconstructed profile (solid curve) at position x = 27.45 mm of 
the image Fig. 4(b), which includes two gelatin sources with a distance of about 3 mm. Each 
gelatin source has a distinct profile in the image. The boundaries between them are clearly 
imaged. Moreover, the reconstructed profile is in good agreement with the original profile 
(dashed curve), which was a grayscale profile of the image Fig. 4(b). The half-amplitude line 
cuts across the reconstructed profile at points Bi, Ai, A2 and B2, respectively. The distances 
|A,B,| = 1.72 mm and |A2B2| = 1.67 mm in the image are close to the original values of about 

1.80 mm and 1.60 mm, respectively, which were measured in the original objects. Therefore, the 
width of the profile at the half-amplitude closely measures its physical size. 

We here define a resolving criterion for estimating spatial resolution. The quarter- 
amplitude line cuts across the profiles at points Ci and C2, respectively, as shown in Fig. 4(c). If 
the right source moves to the position of the left one, the reconstructed profile is equal to the 
spatial summation of the profiles of the two sources, because of the linear superposition property 
of acoustic waves. When point C2 encounters Cj, the new amplitude at C2 or Ci reaches half 
amplitude, and the two sources can still be differentiated. If the right one moves more to the left, 
the new amplitude between their overlap regions goes up more than half amplitude. When we 
use a half-amplitude line to cut across the profiles, we get only two points on the far side of each 
profile, which means that these two sources can no longer be clearly distinguished. Further, 
when point Ai touches A2, these two sources join as an object. 

Therefore, the minimum distance that can be differentiated is approximately equal to the 
summation of the horizontal distance between point Ai and Ci and the horizontal distance 
between point A2 and C2. We have checked additional pairs of sources resembling those in the 
image of Fig. 4(b), and found that this minimum distance is less than 0.5 mm. We can, therefore, 
claim the spatial resolution in our experiments reaches less than 0.5 mm, which agrees with the 
theoretical spatial resolution limit for 1.8 MHz signals whose half wavelength is -0.5 mm with 
the sound speed of 1.5 mm/us. 

We further quantified the line-spread function (LSF) of the imaging system. A metal wire 
with a diameter of 0.2 mm was buried in pork fat and then imaged by our imaging system with a 
scan radius of 75 mm. The thermoacoustic image of the embedded wire is shown in Fig. 5(a). 
Fig. 5(b) shows the profile of the LSF across the wire, where the ringing is caused primarily by 
the limited bandwidth of the detected signals. The full width at half maximum (FWHM) of the 
LSF is 0.5 mm. In analogy to the Rayleigh criterion, an alternative definition of spatial resolution 
is the horizonal displacement between the maximum and the first minimum of the LSF, which is 
0.55 mm [Fig. 5(b)]. The superposition of two LSFs that are 0.55 mm apart is shown in Fig. 7(c), 
in which two represented wires can be clearly distinguished. Because the wire has a 0.2-mm 
diameter, the actual resolution is as fine as 0.35 mm, which agrees with the theoretical limit for 
2-MHz thermoacoustic signals whose half wavelength is 0.38 mm in soft biological tissues. 

Of course, the detecting transducer has a finite physical size. If it is close to the 
thermoacoustic sources, it cannot be approximated as a point detector.   Its size will blur the 
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images and decrease the spatial resolution. Therefore, in experiments, the transducer must be 
placed some distance away from the tissue samples. In general, due to the finite size of the 
transducer, the farther away the transducer is from the detection center, the better the resolution 
at the expense of the signal. 

Other factors limiting spatial resolution are the duration of the microwave pulse and the 
impulse response of the transducer. In general, using a shorter microwave pulse will produce 
more high-frequency components in the thermoacoustic signals. Selection of the duration of the 
pulse is dependent on the experimental conditions and measurement systems. 

-5-4-3-2-1012345 

X(mm) (a) 

^AA^ 

0.55 mm 

X(mm) M 

E < 

Fig. 5. (a) Thermoacoustic image of a wire of 0.2 mm in 
diameter, (b) Profile across the wire, which approximately 
represents the line-spread function (LSF). (c) Superposition 
of two LSFs that are 0.55 mm apart. The dip between the 
two peaks indicates the two LSFs can be distinguished at 
this separation. 

Imaees of thick samples 
The diagram and the photograph of a thick sample are shown in Fig. 6(a) and (b), respectively. 
The reconstructed image produced by our modified backprojection method is shown in Fig. 6(c), 
which agrees with the original sample very well.   The relative locations and sizes of those 
thermoacoustic sources perfectly match the buried objects in the original sample. 

13 
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(c) 
Fig. 6. (a) Diagram of the sample structure and the 
measurement scheme, (b) Photograph of the sample, 
(c) Reconstructed image. 

Imagine of excised breast (mastectomy) tissues 
Several excised breast (mastectomy) specimens were imaged at the University of Texas M.D. 
Anderson Cancer Center using our thermoacoustic imaging system. A mammogram obtained 
before the mastectomy surgery of the breast is shown in Fig. 7(a). After the surgery performed 
by Dr. Hunt, the excised specimen was placed in a plastic cylindrical container with a diameter 
of 10 cm; and it was then imaged by three imaging modalities. The nipple of the specimen faced 
the bottom of the container to simulate the proposed in vivo configuration. The thickness of the 
specimen in the container was ~6 cm. The container had minimal effect on the transmission of 
RF, ultrasound, and x-ray. Another radiograph of the specimen was taken from the top of the 
cylindrical container [Fig. 7(b)]. The contrast of the lesion in Fig. 10(b) was lower than that 
shown in Fig. 10(a) because the specimen was quite thick in the container. A conventional B- 
mode gray-scale sonogram of the specimen [Fig. 7(c)] was taken by Dr. Fornage using a real- 
time scanner (HDI 5000, Philips-ATL, Bothell, WA) equipped with a 5-12 MHz broadband 
linear array electronic transducer. The lesion was located ~2 cm above the bottom of the 
container. The specimen was also imaged in the slice 2 cm above the bottom of the container 
using our thermoacoustic imaging system [Fig. 7(d)]. A circular scan was carried out by a 
cylindrically focused ultrasound detector (2.25 MHz center frequency and 0.9 mm diameter) 
with a step size of 2-1/4 degrees. The scan radius was 7.5 cm. The reconstructed image was 
computed by the backprojection method. The tumor was marked by a red circle. After these 
imaging experiments, the specimen was rendered to the Department of Pathology for 
histopathological diagnosis. This lesion was diagnosed as invasive lobular carcinoma with a size 
of ~1.5 cm. 

14 



The yellow rectangle in Fig. 7(d) marks the wave-guide aperture. The wave-guide for 
this experiment was not large enough to cover the entire specimen. Since then, we have 
upgraded our system with a larger wave-guide to overcome this problem. More experiments on 
mastectomy specimens using the improved imaging system have yet to be done. 
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(d) 
Fig. 7. (a) Pre-operative mammogram showing suspicious 
density in the breast, which was taken with standard 
compression, (b) Radiograph of the mastectomy specimen 
placed in a plastic cylindrical container with a diameter of 
10 cm. (c) Sonogram of the specimen in the container, (d) 
Thermoacoustic image of the specimen in the container. 
The yellow rectangle marks the wave-guide aperture. The 
tumor is marked by a circle in (a), (b) and (d) and by two 
white lines in (c). 

Statement of Work 
Task 1: Setting up the scanning microwave-induced-acoustic tomography (SMIAT) instrument, 

Months 1-12: 
a. Modify/connect the microwave generator and the ultrasonic scanner. 
b. Image biological tissues in vitro with SMIAT. 

Task 2.Extensive evaluation and optimization of the SMIAT setup, Months 13-36: 
a.   Simulate   microwave-induced-acoustic    signals   to   provide    guidance   on   the 

experiments. 
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b. Optimize the ultrasonic and microwave parameters for good resolution and signal-to- 
noise ratio. 

c. Quantify the maximum imaging depth with SMIAT. 
d. Image biological tissues in vitro with SMIAT and quantify the imaging resolution. 
e. Image biological tissues in vitro with SMIAT and ultrasonography and quantify the 

contrast improvement of SMIAT over ultrasonography. 
f. Co-register the SMIAT images with the conventional ultrasonograms. 

Both tasks have been successfully accomplished. We went beyond the original planned 
task by imaging mastectomy specimens at M.D. Anderson Cancer Center. 

Key Research Accomplishments 
We have accomplished the following during the past year: 

• A reshaping filter was applied to the temporal piezoelectric signals from the transducer to 
increase the weight of the high-frequency components, which improved the lateral 
resolution, and to broaden the spectrum of the signal, which enhanced the axial 
resolution. 

• Microwave-induced thermoacoustic tomography of inhomogeneous tissues was 
implemented using multi-sector scanning. We solved the problem of blind surfaces using 
this approach. 

• We have applied the synthetic-aperture method to linear-scanning microwave-induced 
thermoacoustic tomography in biological tissues for the first time. 

• A backprojection algorithm based on rigorous theory was derived and was used to 
reconstruct the cross-sectional image from the thermoacoustic measurements in a circular 
configuration. The results demonstrate the possibility of application in detecting small 
tumors buried in biological tissues using microwave absorption contrast and ultrasound 
spatial resolution. 

• An exact and an approximate time-domain reconstruction algorithm for thermoacoustic 
tomography in a spherical geometry were derived and published. 

• An exact frequency-domain reconstruction algorithm for thermoacoustic tomography in a 
planar geometry was derived and published. 

• An exact frequency-domain reconstruction algorithm for thermoacoustic tomography in a 
cylindrical geometry was derived and published. 

• High-resolution and high-contrast images were obtained and published. 
• Further progress in the reconstruction algorithms was made and published. 
• Better understanding of the mechanism of spatial resolution was achieved and published. 
• Better understanding of the effect of heterogeneity on the images was achieved and 

published. 
• Extension of the technology to other electromagnetic sources was achieved and 

published. 
• Imaging of mastectomy specimens at M.D. Anderson Cancer Center in Houston was 

tested. 
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Conclusions 
The combination of ultrasound and microwave has provided us a unique opportunity for 

early-cancer imaging with high resolution and high contrast. We have made significant technical 
progress in thermoacoustic imaging including data acquisition and imaging reconstruction. 
Specifically, our accomplishments include (1) an exact and an approximate time-domain 
reconstruction algorithm for thermoacoustic tomography in a spherical geometry was derived 
and published, (2) an exact frequency-domain reconstruction algorithm for thermoacoustic 
tomography in a planar geometry was derived and published, (3) an exact frequency-domain 
reconstruction algorithm for thermoacoustic tomography in a cylindrical geometry was derived 
and published, and (4) high-resolution and high-contrast images were obtained and published. 
The reconstruction is an inverse source problem similar to that in PET (positron emission 
tomography); however, the reconstruction in PET is based on geometric optics whereas the 
reconstruction in thermoacoustic imaging is based on diffractive/wave optics. We have 
successfully imaged biological tissue with high resolution and high contrast. We have made 
further progress in the reconstruction algorithms (MP Aug. 2002 and IEEE-TBE 2003), in the 
mechanism of spatial resolution (PR 2003), in the understanding of heterogeneity (IEEE-UFFC 
2003), and in extending the technology to other electromagnetic sources (MP Dec. 2002). We 
went beyond the original planned task by imaging mastectomy specimens at M.D. Anderson 
Cancer Center. 
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Appendix 1 

Signal processing in scanning thermoacoustic tomography 
in biological tissues 

Yuan Xu and Lihong V. Wanga) 

Optical Imaging Laboratory, Biomedical Engineering Program, Texas A&M University, 3120 TAMU, 
College Station, Texas 77843-3120 

(Received 12 December 2000; accepted for publication 27 March 2001) 

Microwave-induced thermoacoustic tomography was explored to image biological tissues. Short 
microwave pulses irradiated tissues to generate acoustic waves by thermoelastic expansion. The 
microwave-induced thermoacoustic waves were detected with a focused ultrasonic transducer to 
obtain two-dimensional tomographic images of biological tissues. The dependence of the axial and 
the lateral resolutions on the spectra of the signals was studied. A reshaping filter was applied to the 
temporal piezoelectric signals from the transducer to increase the weight of the high-frequency 
components, which improved the lateral resolution, and to broaden the spectrum of the signal, 
which enhanced the axial resolution. A numerical simulation validated our signal-processing ap- 
proach.   © 2001 American Association of Physicists in Medicine.   [DOI: 10.1118/1.1380436] 

Key words: microwave, ultrasonics, thermoacoustics, tomography, resolution, filter 

I. INTRODUCTION 

When electromagnetic radiation is absorbed in biological tis- 
sues, the heating and the subsequent expansion will cause 
emission of acoustic signals, which is called the thermoa- 
coustic effect. In thermoacoustic tomography, the thermoa- 
coustic signals from a tissue sample are collected to map the 
distribution of the radiative absorption within the sample. 
The radiative absorption is closely related to the physiologi- 
cal and pathological status of the tissue: for example, cancer- 
ous breast tissues are 2-5 times more strongly absorbing to 
microwaves than surrounding normal breast tissues, which 
has been attributed to an increase in bound water and sodium 
within malignant cells.1"3 

Thermoacoustic tomography combines good imaging 
resolution with good imaging contrast. Purely microwave 
imaging has the advantage of good imaging contrast but suf- 
fers from poor spatial resolution due to the large wavelength 
of microwaves.4"7 On the other hand, purely ultrasonic im- 
aging has good spatial resolution but poor contrast. Ther- 
moacoustic tomography can bridge the gap between them. 

There are various types of thermoacoustic tomography, 
such as photoacoustic tomography and microwave-induced 
thermoacoustic tomography (MITT). In photoacoustic 
tomography,8"11 due to the use of short laser pulses—several 
nanoseconds in pulse width—and the strong attenuation of 
the laser light by tissues, the frequency spectrum of the 
acoustic signal from the buried object of several micrometers 
in size is estimated to have significant components up to 75 
MHz,9 which makes its axial resolution as good as 10 fim. 
However, the maximum imaging depth in photoacoustic to- 
mography is limited by the strong attenuation of the laser 
light and of the high-frequency acoustic waves. On the other 
hand, MITT can be used to image much deeper tissues due to 
the relatively low absorption of microwaves. The spectra of 

the acoustic signals in MITT are usually below 2 MHz, and 
the axial resolution is greater than 1 mm. Several investiga- 
tors employed microwave-induced thermoacoustic waves in 
the 1980s for imaging of biological tissues; these early 
works, however, did not produce any tomographic or depth- 
resolved images.12"14 Recent progress realized tomographic 
imaging of biological tissues based on microwave-induced 
thermoacoustic waves.15"18 

We here present our studies on the signal-processing as- 
pect of scanning MITT. Filtering has been applied to signal 
processing in photoacoustic tomography11 and MITT;15 how- 
ever, it was used to eliminate the dc (direct current) offset 
and the effect of the response of the transducer on the piezo- 
electric signal, respectively. For the first time, we discuss in 
details how the spectra of signals influence the resolution of 
thermoacoustic tomography and how the resolution can be 
improved by signal processing. In our imaging approach, the 
lateral resolution was achieved by use of a focused ultrasonic 
transducer, whereas the axial resolution was obtained by 
measuring the temporal profiles of the acoustic signals. The 
dominance of the low-frequency (<0.5 MHz) components in 
the raw temporal signals limited the lateral resolution, and 
the narrow bandwidth of the signals restricted the axial reso- 
lution. Consequently, the image before signal processing had 
poor lateral resolution and many artifacts. We showed that a 
"simple" filtering method improved the lateral resolution to 
some extent but at the expense of the axial resolution. To 
overcome this problem, we proposed a new reshaping filter. 
It was applied to the temporal signals from the transducer to 
increase the weight of the high-frequency components, 
which improved the lateral resolution, and to broaden the 
spectrum of the signal, which enhanced the axial resolution. 
A numerical simulation validated our signal-processing ap- 
proach. 
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FIG. 1. Experimental setup for scanning MITT. 

II. METHODS 

A. Experimental setup 

The experimental setup for this study is shown in Fig. 1. 
A Cartesian coordinate system was set up for reference: The 
x axis pointed outward perpendicularly to the drawing plane, 
the y axis pointed to the right in the drawing plane, and the z 
axis pointed upward along the acoustic axis. A 3 GHz micro- 
wave generator transmitted microwave pulses. The pulse 
width was modified from the original manufacturer's setting 
to 0.5 fis. A function generator was employed to trigger the 
microwave generator, to control its pulse repetition fre- 
quency, and to synchronize the sampling by the oscilloscope. 
Microwave energy was delivered by a tapered waveguide 
with a cross section that gradually narrowed from 72 mm 
X34mm to 72mmX5 mm. The object to be imaged was a 
slab of chicken muscle with a y-z cross section of 14 mm 
X 8 mm, and the slab was plunged into lard contained in a 
plexiglass tank. The tank was mounted on a two-dimensional 
(2D) x-y translation stage (MD2, Arrick Robotics), which 
was driven by two computer-controlled stepper motors. Lard 
and plexiglass were used for their low absorption to micro- 
waves. Lard also provided good acoustic coupling to an ul- 
trasonic transducer facing the microwave waveguide. The 
central frequency of the ultrasonic transducer (V314, Pana- 
metrics) was 1 MHz, the bandwidth was 0.6 MHz, the diam- 
eter of the active element was 1.9 cm, and the focal length 
was 2.5 cm. The transducer was connected to a low-noise 

'pulse preamplifier. The amplified signal was averaged 100 
times, recorded by an oscilloscope (TDS-640A, Tektronix), 
and then transferred to a personal computer. 

In our scanning MITT, the ultrasonic transducer measured 
the time-of-arrival signals of the thermoacoustic waves. The 
distances between the thermoacoustic sources and the trans- 
ducer were calculated by multiplying the time of arrival with 
the speed of sound in the medium. Therefore, a time-domain 
signal can be converted into a one-dimensional (ID) image 
along the acoustic axis (z axis), which is similar to an ultra- 
sonic A-scan image. Scanning the sample along the x or the 
y axis and combining the multiple ID images yielded a 2D 

cross-sectional image of the sample in the x-z or y-z plane, 
which is analogous to an ultrasonic B-scan image. 

B. Signal processing 

Two methods of signal processing in the frequency do- 
main based on finite impulse response (FIR) filters were ap- 
plied to the experimental data. The filtering is implemented 
by multiplying a properly selected real window function to 
the spectra of the signals, which introduces no phase distor- 
tion. In the first method, all the signals are processed with the 
same bandpass filter, which has a passband between 0.5 and 
1.5 MHz with a transition bandwidth of —0.5 MHz. 

To overcome the difficulties of the first method, we pro- 
posed a reshaping method in the frequency domain. This 
method can make the bandwidth of the processed signal 
broader to enhance the axial resolution and weigh the high- 
frequency components more heavily to improve the lateral 
resolution. The essence of this method is to apply a reshap- 
ing filter to each temporal signal. The shape of the reshaping 
filter for the signal at any y position is chosen to be the 
inverse of the envelope of the original frequency spectrum, 
where the envelope of the spectrum is obtained by connect- 
ing the major local maxima. Without distorting the positions 
of the pulses in the temporal signal, this filter can achieve the 
widest possible bandwidth in the filtered signal and conse- 
quently the best axial resolution. Moreover, to filter out the 
very low-frequency disturbance—which is caused by the 
preamplifier—and the high-frequency noise beyond the cut- 
off frequency—where the signal-to-noise ratio is unity, a 
smoothing filter is applied to the signal. Unlike the reshaping 
filter, the smoothing filter is the same for the signals from all 
the scanned positions of the transducer. The final filter is the 
product of the above two filters in the frequency domain. To 
increase the contrast, the background value is subtracted 
from the spectrum before the final filter is applied. Lastly, to 
improve the lateral resolution, the final filter is scaled by a 
constant factor such that the spectral amplitudes of all the 
piezoelectric signals at a selected high frequency remain un- 
changed after filtering. 

III. RESULTS AND DISCUSSION 

An image of the chicken muscle is presented in Fig. 2(a). 
Each vertical line in this 2D image was obtained from a 
temporal piezoelectric signal of the ultrasonic transducer, 
and the sample was scanned horizontally along the y axis 
with a step size of 1 mm to acquire the multiple vertical 
lines. Figures 2(b) and 2(c) show the temporal wave forms 
and the corresponding frequency spectra, respectively, for y 
equal to 20 mm—where the transducer axis crossed the 
muscle—and equal to 2 mm—where the transducer axis did 
not cross the muscle. The buried muscle was clearly imaged 
as shown in Fig. 2(a): The white line at z=17mm corre- 
sponds to the upper boundary between the lard and the 
muscle, and the dark line at z = 25.1 mm to the lower one. 
The thickness of the muscle in the image is 8.1 mm and 
agrees with the actual one. But the lateral resolution is poor: 
The width of the muscle in the image appears to be 36 mm, 
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FIG. 2. (a) 2D image of the y-z cross section of the sample obtained by 
scanning MITT before data processing; (b) temporal microwave-induced 
thermoacoustic signals at different positions y = 20 and 2 mm; (c) the main 
panel shows both of the corresponding spectra on a linear scale, and the 
inset shows the spectrum for y=20 mm on a logarithmic scale. 

much greater than the actual 14 mm width. Furthermore, 
there appear many ghost objects between the two boundaries 
and below the lower boundary. Because the muscle and the 
lard are almost uniform, no heterogeneity in the image is 
expected from other than the boundaries. 

To explain these problems, we resort to the relationship 
between the lateral resolution of the detecting ultrasonic 
transducer and the frequency spectrum of the received tem- 
poral wave form. The lateral resolution of the ultrasonic 
transducer is determined by its focal diameter, which is given 
by 

dr= 
IMVglf 

dja 
(1) 

where va is the speed of sound in the medium, If is the focal 
length of the transducer, da is the diameter of the active 
element in the transducer, and /„ is the acoustic frequency. 
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FIG. 3. The distributions of the signal components around/= 1.31 and 0.44 
MHz along the y axis. 
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FIG. 4. (a) The 2D image after filtering the temporal signals with a standard 
bandpass filter; (b) the filtered temporal signal at je=20mm. 

Therefore, the lateral resolution is inversely proportional to 
the frequency of the acoustic signal or the piezoelectric sig- 
nal. Because the dominant frequency components of the 
piezo-electrical signals are far below 1 MHz, as shown in 
Fig. 2(c), the lateral resolution is much worse than the focal 
diameter of the transducer, 2 mm, at its 1 MHz central fre- 
quency. 

The dependence of the lateral resolution on the frequency 
spectra is illustrated more clearly in Fig. 3, which displays 
the ID lateral images—along the y axis—corresponding to 
the 1.31 and 0.44 MHz components of the spectra, respec- 
tively. The 1.33 MHz image is sharper than the 0.44 MHz 
one, and therefore, has superior lateral resolution. Poor reso- 
lution that is caused by the dominating low-frequency com- 
ponents is also responsible for the ghost piezoelectric signals 
at y = 2 mm, where the transducer axis does not cross the 
buried muscle and thus the received piezoelectric signals can 
be only wide-angle low-frequency signals. In comparison, 
the piezoelectric signal at y = 20mm—where the acoustic 
axis of the transducer crosses the muscle—is primarily from 
the transducer axis and hence has greater high-frequency 
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FIG. 5. (a) The envelope (dashed curve) of the spectrum 
(solid curve) of the temporal signal at y = 20 mm and 
the spectrum after the reshaping processing (dotted 
curve); (b) the reshaping filter—which is the inverse of 
the envelope, the smoothing filter—which is used to 
filter the high-frequency noise and the extremely low- 
frequency signal, and the final filter—which is the prod- 
uct of the reshaping filter and the smoothing filter; (c) 
the temporal wave form corresponding to the final filter; 
(d) the temporal wave form corresponding to the spec- 
trum in Fig. 5(a) after the reshaping processing. 
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components than the piezoelectric signal at y = 2 mm, as 
shown in Fig. 2(c). 

From the above discussion, it is clear that increasing the 
high-frequency components of the piezoelectric signals can 
improve the lateral resolution. The most natural solution is to 
apply a bandpass filter to cut off the low-frequency compo- 
nents. An example of such processing, in which the filter has 
a passband between 0.5 and 1.5 MHz with a transition band- 
width of —0.5 MHz, is shown in Fig. 4(a). The lateral reso- 
lution is much improved but still unsatisfactory; however, the 
axial resolution seems worse, and some artifacts were gener- 
ated, as shown in Fig. 4(b). The poor axial resolution is due 
to the decrease of bandwidth in the signal processing. As 
shown in the inset of Fig. 2(c), the spectral amplitude drops 
exponentially with the frequency; therefore, the filtered sig- 
nal has a narrower bandwidth than the original one. A nar- 
rower bandwidth in the frequency domain results in a 
broader signal in the time domain thus poor axial resolution. 

To overcome the difficulties of the simply filtering, we 
applied reshaping filters to the signals. The shape of the re- 
shaping filter [Fig. 5(b)] for the signal at y = 20 mm is chosen 
to be the inverse of the envelope of the original frequency 
spectrum; where the envelope of the spectrum is obtained by 
connecting the major local maxima, as shown by the dashed 
curve in Fig. 5(a). Without distorting the positions of the 
pulses in the temporal signal, this filter can achieve the wid- 
est possible bandwidth in the filtered signal and consequently 
the best axial resolution. Moreover, to filter out the very 
low-frequency disturbance—which is caused by the 
preamplifier—and the high-frequency noise beyond the cut- 
off frequency—where the signal-to-noise ratio is unity, a 
smoothing filter is applied to the signal. Unlike the reshaping 
filter, the smoothing filter is the same for the signals from all 
the scanned positions of the transducer. 

The final filter, which is the product of the above two 
filters in the frequency domain, is shown in Fig. 5(b); the 

final filter in the time domain is shown in Fig. 5(c). To in- 
crease the contrast, the background value—which is deter- 
mined by the amplitude at both the ends of the solid curve in 
Fig. 3—is subtracted from the spectrum before applying the 
final filter. As we wish to obtain a lateral resolution ap- 
proaching that at 1.31 MHz (Fig. 3), the final filter is scaled 
by a constant factor such that the spectral amplitude of the 
final filter at 1.31 MHz is set to unity; consequently, the 
spectral amplitudes of the piezoelectric signals for all piezo- 
electric signals remain unchanged at 1.31 MHz. The spec- 
trum and the temporal wave form of the processed signal at 
v = 20mm are displayed in Figs. 5(a) and 5(d). The axial 
resolution of the processed signal is much better than that of 
the unprocessed signal [Fig. 2(b)] because the processed 
spectrum is much broader than the unprocessed one [Fig. 
2(c)]. The processed 2D image (Fig. 6) is also clearer than 
the original image. The ghost objects in the original images 
were removed, and the two boundaries became quite distinct 
from the background. The muscle along the y axis in the 
image is about 15 mm, which agrees well with the 14 mm 
actual size. 

A numerical simulation was implemented to test our re- 
shaping method. A simulated temporal waveform [Fig. 7(a)] 
includes three pulses at t = 20, 21, and 30 fis. The 20 and 30 
fxs pulses are determined by 

s(t) = e\p 
(t-t0)

2 

and the 21 /JS pulse is determined by 

e-'o)2^ 
s(t)=l ! + • 

w 

(2) 

(3) 

where w is the pulse width and is set to 0.8 /is. The corre- 
sponding spectrum is shown in Fig. 7(b), which resembles 
the spectrum of the signal at v = 20 mm in our image. Be- 
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FIG. 6. The 2D image after applying the final filter to the temporal piezo- 
electric signals. 

cause the 20 and 21 ps pulses are too close to each other, 
they merge into one pulse in the original constructed signal. 
In the signal processed by our method [Fig. 7(c)], the two 
pulses are separated distinctively, and all the pulses become 
sharper. The positioning errors of the restored peaks are 
within 10% of the pulse width. However, the signal-to-noise 
ratio (SNR) in Fig. 7(c) is lower than that in Fig. 7(a) as a 
result of the increased weighting of the noisy high-frequency 
components in the reshaping process. Nevertheless, the deg- 
radation of SNR in the processed signals has little influence 

1523 

on the image, as shown in Fig. 6. In contrast, the simple 
filtering did not produce as a good outcome [Fig. 7(d)]. 

Our reshaping method is especially efficient for signals 
that consist of multiple pulses of similar shapes, which is 
quite common in ultrasonic detection. Assuming a temporal 
signal comprises two identical pulses—for illustration 
purposes—at different times, its spectral amplitude can be 
written as 

A(f) = s(f)\l+exp(i2TrfAt)\=s(f)p(f), (4) 

where/is the frequency, s(f) is the spectral amplitude of a 
single pulse, and At is the time interval between the two 
pulses. Because the oscillatory p(J) has a flat envelope, the 
envelope of A(f) approximately equals that of s(f), which 
determines the shape of a single pulse. On the other hand, the 
features and the phase of the spectrum contain the position- 
ing information of the pulses, which is the most important 
information in imaging. In our reshaping method, the signal 
is multiplied by the reciprocal of its own spectral envelope, 
resulting in a flat envelope in the processed spectrum; con- 
sequently, the pulses are narrowed in the time domain. As the 
reshaping filter is smooth, it does not alter the features and 
the phase of the spectrum; accordingly, the positions of the 
pulses in the time domain remain unchanged. 

In general, applying the reshaping filter will sharpen the 
boundaries of signals, which can be illustrated with an ideal 
slab. The thermoacoustic wave from a slab irradiated by a 
sufficiently short microwave pulse can be represented by a 
square wave. It can be shown that filtering the square wave 
with the reshaping filter is equivalent to taking the first de- 
rivative of the wave in the time domain, which yields the two 
boundaries of the slab. The spectral amplitude of the square 
wave with a duration a is |sin(ira/)/(Tr/)|; thus its envelope 
is 1 /(-"■/), and the reshaping filter is irf. Applying the re- 
shaping filter to the square wave in the frequency domain is 
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FIG. 7. (a) The simulated piezoelectric signal; (b) the 
corresponding spectrum; (c) the piezoelectric signal af- 
ter reshaping the spectrum; (d) the piezoelectric signal 
after applying the smoothing filter as shown in Fig. 
5(b). 
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equivalent, within a constant factor, to differentiating the sig- 
nal in the time domain, which yields a positive delta function 
at the front boundary of the square wave and a negative one 
at the rear boundary. 

Our study pointed out some potential approaches that can 
be used to improve the imaging resolution in our experi- 
ments. One approach is to improve the SNR of the signal so 
that the cutoff frequency is extended. Because only the spec- 
tral region with an SNR greater than unity provides useful 
information for our reshaping method, an increased cutoff 
frequency can broaden the usable spectrum and accordingly 
improve both the lateral and the axial resolutions. However, 
this advantage can only be realized when the spectrum is 
reshaped because the unprocessed high-frequency spectral 
amplitude is so small compared with the low-frequency one 
that it contributes little to improving the lateral and the axial 
resolutions, as shown in Fig. 2(c); after the reshaping, the 
weight of the high-frequency portion is increased greatly, 
resulting in an improved resolution. Another potential ap- 
proach to improving the resolution is to shift the acoustic 
spectrum to a higher frequency by modulating the micro- 
wave source. 

IV. CONCLUSIONS 

Our studies showed that scanning MITT is a promising 
imaging tool for biological tissues. The boundaries of differ- 
ent tissue constituents can be imaged clearly and accurately 
with the assistance of image processing. By reshaping the 
spectra of the piezoelectric signals, the weight of the high- 
frequency components is increased greatly, resulting in much 
improved axial and lateral resolutions, both of which were 1 
mm in our current experimental setup. The numerical simu- 
lation also verified our signal-processing method. Our 
spectral-reshaping method can also be applied to other ultra- 
sonic signals comprising several pulses of similar shapes. 
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A study of microwave-induced thermoacoustic tomography of inhomogeneous tissues using multi- 
sector scanning is presented. A short-pulsed microwave beam is used to irradiate the tissue samples. 
The microwave absorption excites time-resolved acoustic waves by thermoelastic expansion. The 
amplitudes of the acoustic waves are strongly related to locally absorbed microwave-energy density. 
The acoustic waves may propagate in all spatial directions. A focused ultrasonic transducer is 
employed to acquire temporal acoustic signals from multiple directions. Each detected signal is 
converted into a one-dimensional (ID) image along the acoustic axis of the transducer. The cross- 
sectional images of the tissue samples are calculated by combining all of the ID images acquired in 
the same planes. © 2001 American Association of Physicists in Medicine. 
[DOI: 10.1118/1.1395037] 

Key words: microwave, thermoacoustics, tomography, imaging, sector, scan 

I. INTRODUCTION 

Microwave-induced thermoacoustic tomography of biologi- 
cal tissues has recently attracted considerable interest.1-3 

With this technique, a short-pulsed microwave beam is used 
to irradiate tissue samples. The tissue absorbs the microwave 
energy and excites thermoacoustic waves by thermoelastic 
expansion. The generated acoustic waves carry information 
about the microwave absorption properties of the sample. 
The different absorption properties among different types of 
tissue permit the construction of a distribution of microwave 
absorption in a homogeneous acoustic medium. 

The microwave penetration depth in most soft tissues lies 
somewhere between that of the fat tissue, which lacks water 
and salt, and muscle tissue, which is abundant in water and 
salt.2 Specifically, the penetration depths for fat and muscle 
tissue at 3-GHz microwave are 9 cm and 1.2 cm, respec- 
tively. The wide range of microwave absorption coefficients 
among various other tissues can lead to a high imaging con- 
trast for biological tissues. However, it is difficult to achieve 
good spatial resolution using pure microwave imaging of 
biological tissues because of the long wavelength of micro- 
waves, e.g., 3 cm at 3 GHz.4'5 This problem can be overcome 
by the use of microwave-induced thermoacoustic waves. Be- 
cause the velocity of acoustic waves in soft tissue is nearly 
1.5 mm//us, thermoacoustic signals at mega Hz can provide 
millimeter spatial resolution. 

The intensities of the microwave-induced thermoacoustic 
signals are far lower than the ultrasonic pulses used in purely 
ultrasound imaging (ultrasonography). However, a unique 
advantage of thermoacoustic tomography is the detection of 
the inhomogeneous microwave absorption property of tis- 
sues when the acoustic property is homogeneous. Such a 
capability may lead to early detection of cancer. 

Key problems in microwave-induced thermoacoustic to- 
mography are the measurement of acoustic signals excited 

by microwave pulses and the construction of images from 
the acquired data. One approach is to use focused ultrasonic 
transducers to localize the thermoacoustic sources. The ma- 
ture scanning techniques (linear and sector scans) in ultra- 
sonography can be used to detect the thermoacoustic 
signals.6 Each scan line may reflect the profile of the medium 
along the acoustic axis of the focused transducer. However, 
an acoustic source has a strong direction of radiation, espe- 
cially if the surface is relatively smooth, from which the 
acoustic energy is mainly transmitted out in one direction. 
The higher the frequency of the acoustic wave is, the stron- 
ger the radiation direction is. The thermoacoustic signals 
caused by microwave pulses are composed of high- 
frequency components as well as low-frequency compo- 
nents, and the intensities of the high-frequency components 
are far less than the ultrasonic pulses used in ultrasonogra- 
phy. Only if its acoustic axis is nearly perpendicular to the 
surface of the acoustic source, can the focused transducer 
acquire enough high-frequency components for accurate spa- 
tial localizations of the thermoacoustic sources. Therefore, it 
is necessary, with this method, to scan the sample from all 
possible directions by a focused transducer. Since the ther- 
moacoustic wave is weak, in order to get a good signal-and- 
noise ratio (SNR), we use a focused transducer with a big 
aperture area in our initial study, because the SNR is propor- 
tional to the square root of the aperture area. 

Here we present our study on microwave-induced ther- 
moacoustic tomography of inhomogeneous tissues by a two- 
dimensional (2D) full-directional scan—the combination of 
multiple-sector scans at various positions on a circle around 
the sample. Each detected time-resolved signal is converted 
into a one-dimensional image along the acoustic axis. The 
axial resolution is obtained by measuring the temporal pro- 
files of the acoustic signals, and the lateral resolution is 
mainly determined by the focal diameter of the transducer. 
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The two-dimensional (2D) cross-sectional images are calcu- 
lated from the data acquired in the same planes. Some im- 
ages of biological-tissue samples are achieved experimen- 
tally. These images clearly reveal the boundaries of different 
tissues as well as their locations, which are in good agree- 
ment with the actual samples. 

II. THEORY 

A. Thermoacoustic wave 

When the microwave pulse duration is very short, the 
thermal conduction time is far greater than the thermoacous- 
tic transit time. In practice, the duration of the microwave 
pulse is less than 1 fis, which meets this criterion.1 In this 
case, the heat diffusion's effect to the thermoacoustic wave 
in the tissue can be neglected. Consequently, the generation 
of thermoacoustic wave by deposition of microwave energy 
can be described by the following equation:7 

7        1     9l 

p(r,t) = - 
ß aijt) 
cp  at 

A(T), (i) 

wherep{r,t) is the thermoacoustic pressure at position r and 
time /, c is the speed of sound, ß is the isobaric volume 
expansion coefficient, Cp is the heat capacity, /(/) is the 
temporal profile of the microwave pulse, and A(r) is the 
fractional energy-absorption per unit volume of soft tissue at 
position r, which is proportional to the microwave absorp- 
tion coefficient of the tissue at position r. 

Equation (1) shows that the amplitudes of the thermoa- 
coustic waves are strongly related to locally absorbed 
microwave-energy density, i.e., the local microwave absorp- 
tion coefficient or penetration depth. Considering a spheri- 
cally symmetric deposition of microwave energy with radius 
R, 

A(r)=A0U(-r + R), 

where the step function 

1,    ^0, 

(2) 

u(Z)= 0,    £<0. 

Assuming a delta pulse of the form I(t) = I0S(t), the ther- 
moacoustic pressure at detection position r for t> 0 is found 
from Eq. (1) to be7 

ßhc  A« 
p(r,t)=^-^;(r-ct)[U(-r+R + ct) 

+ U(r+R-ct)]. (3) 

Moreover, the first derivative of the thermoacoustic pressure 
is written as 

dp(r,t)        ßhc1 

dt 2rCT 
A0U(-\ct-r\+R). (4) 

Equation (4) indicates that the first derivative of the thermoa- 
coustic pressure is a mapping of the spherically spatial en- 
ergy deposition of Eq. (2). Therefore, we can use either the 
detected thermoacoustic pressure or its first derivative to 

Rotational scan 

Transducer 

FIG. 1. A diagram of the multi-sector scan scheme. 

construct the microwave absorption distribution and the lat- 
ter is found to be better. In general, a large medium can be 
regarded as a set of small media or thermoacoustic sources, 
which have different microwave absorption coefficients. 
Through the following multi-sector scan method, each small 
thermoacoustic source can be localized. 

B. Multi-sector scan 

A diagram of the 2D multi-sector scanning scheme is 
shown in Fig. 1. A rectangular coordinate system (x,y) is set 
up for reference. Each sector-scan frame has a set of scan 
lines, which originate from the same location and radiate out 
in different directions as in ultrasonography. The origins of 
different frames are set on a circle around the sample so that 
the focused transducer may detect the signals from all direc- 
tions in the same plane. For convenience, the center and 
radius of the circle are referred to as the rotation center and 
the rotation radius, respectively. 

The microwave absorption and sample heating occur in a 
very short time, and the propagation velocity of the electro- 
magnetic wave is far greater than that of an ultrasonic one. 
Therefore, it is reasonable to assume that the sample expan- 
sion resulting from the microwave pulses causes acoustic 
waves instantaneously. The distance between the thermoa- 
coustic source and the transducer is simply calculated by 
multiplying the time of arrival by the velocity of the acoustic 
wave. Therefore, at each scan line, the thermoacoustic pres- 
sure along the acoustic axis induced by the microwave pulses 
can be obtained directly from the detected temporal signals. 

All scan lines are used to construct a cross-sectional im- 
age by the method of linear interpolation. A sector frame can 
only detect part of the sound source. Figure 2(a) shows the 
same x-y plane as in Fig. 1. The transducer is now set at the 
position of point Ox. A local polar coordinate system (d,a) 
is set up for the sector frame with the origin Ox, and its polar 
axis is through the rotation center point O. The angle 0 be- 
tween the polar axis and y axis is called the rotation angle. 

Medical Physics, Vol. 28, No. 9, September 2001 



'1960 Xu, Ku, and Wang: Multi-sector scanning 1960 
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iA(x,y)=A(d, a) 

A(d2,at) 

FIG. 2. (a) The rectangular coordinate system (x,y) and the local polar 
coordinate system (d,a,6); (b) the diagram of the linear interpolation. 

The rotation radius between point O and Ox is R. The dis- 
tance between the thermoacoustic source and the transducer 
is d. Therefore, at each scan line, the point A(x,y) in the 
rectangular coordinate system can be denoted as A(d,a,0) 
in the local polar coordinate system with rotation angle 0. 
The relationship between (x,y) and {d,a,0) is determined 
by the following equations: 

d=Jr2 + R2-2rRcosy, 

0=arcsin(r siny/d), 

/8=arctan(y/x), 

y=tr/2-a-ß, 

(5) 

r=^x2+y2. 

In experiments, a series of discrete data are acquired in each 
local polar coordinate system. We use linear interpolations to 
project the data from each local polar coordinate system to 
the rectangular coordinate system. For simplicity, we neglect 
the symbol 6 in the following description. As shown in Fig. 
2(b), suppose that point (d,a) is among the measured data 
A(duax), A{d2,ax), A{dua2), and A(d2,a2), i.e., a, 
*Sa*£a2, d1*£d^d2, where dt(i = 1,2) is the distance be- 

tween the thermoacoustic source and the transducer and is 
calculated by multiplying the time of arrival tt(i= 1,2) by 
the velocity of the acoustic wave c in the medium, i.e., dt 

= ctj (i= 1,2). Then A(d,a) can be calculated by 

A{d,a) = 
d-di 

d-) — d\ 
■(A2-A1)+Al, 

A(d>,a2)-A(d,,a,) 
Al=A(dual)+ * __ X(a-tti), 

A2=A(d2,a1) + 

a2-a1 

A(d2,a2)-A{d2,ax) 

(6) 

(a— ax). 

Function A could be the thermoacoustic pressure p(t) or the 
derivative dp{t)/dt. The derivative is helpful for improving 
the sharpness of the boundaries between different tissues, 
which can be calculated through an inverse fast Fourier 
transformation (FFT) as 

dp(t) 

dt 
= FFT"1{/fc>/?(«)}, (7) 

where p(<o) is the Fourier transformation of p(t). 
In this way, we can compute each image Aff(x,y) from 

each sector frame A(d,a) at rotation angle 0. A full 2D 
cross-sectional image is obtained with the following summa- 
tion: 

A(x,y) = ^ Aß(x,y). (8) 

III. EXPERIMENTAL METHOD 

We use a focused transducer to implement a multi-sector 
scan. Figure 3 shows the experimental setup. A plexiglass 
container is filled with mineral oil. A rotation stage and a 
focused transducer are immersed inside it in the same x-y 
plane. The sample can be set in the rotation stage. The trans- 
ducer is used to detect the thermoacoustic signal from the 
sample. The angle panel indicates the angle between the 
acoustic axis of the transducer and the rotation radius. We 
manually turn the transducer to point to one direction. A step 
motor directly drives the rotation stage while the transducer 
is fixed. Obviously, this is equivalent to a transducer that 
rotationally scans around the sample with a manual sector 
scan. The transducer (V314, Panametrics) has a central fre- 
quency of 1 MHz, a bandwidth of 0.6 MHz, a diameter of 
1.9 cm, a focal length of 2.5 cm at 1 MHz, a 3-dB focal 
diameter of 2.1 mm, and a focal zone of 1.76 cm along the 
acoustic axis. 

The microwave pulses transmitted from a 3-GHz micro- 
wave generator have a pulse energy of 10 mJ and a pulse 
width of 0.5 /AS. A function generator (Protek, B-180) is used 
to trigger the microwave generator, control its pulse repeti- 
tion frequency, and synchronize the oscilloscope sampling. 
Microwave energy is delivered to the sample by a rectangu- 
lar wave guide with a cross section of 72 mmX34 mm. 

A personal computer is used to control the step motor in 
rotating the sample. The signal from the transducer is first 
amplified through a pulse amplifier, then recorded and aver- 
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aged 100 times by an oscilloscope (TDS640A, Tektronix), 
and finally transferred to a personal computer for imaging. 

IV. RESULTS AND DISCUSSION 

The first sample we tested was a piece of muscle tissue— 
centered in a fat disc as shown in Fig. 4(a)—which was cut 
across and photographed after the experiment. Both the 
muscle and fat were cut from pork. The maximum diameter 
of the sample was 38 mm, and the thickness was 5 mm. The 
rotation center was set inside the muscle. The transducer 
rotationally scanned the sample (only in the rotation-radius 
directions) from 0 to 360 degrees with a step size of 2.25 
degrees. We then used these 160 scan lines to calculate a 2D 
cross-sectional image with linear interpolations. Good agree- 
ment between the original profile in Fig. 4(a) and the con- 
structed images in Figs. 4(b) and 4(c) was obtained, where 
Figs. 4(b) and 4(c) were computed from the measured piezo- 
electric signals and the first derivative of those, respectively. 
The boundaries between the fat and muscle or oil are clearly 
imaged. This is because when the rotation center is in the 

center of the sample, each scan line is nearly perpendicular 
to the boundaries of the muscle or fat, and the transducer can 
receive sufficient thermoacoustic signals from the radius di- 
rections alone for imaging. 

The second sample had a structure as shown in Fig. 5(a), 
which was also cut across and photographed after the experi- 
ment. The fat was first cut from pork: the maximum diameter 
of the sample was 39 mm; and the thickness was 5 mm. Then 
we cut away a hole far away from its center and filled in a 
small piece of muscle, which was also cut from pork. The 
muscle size was about 10 mm in diameter and 5 mm in 
thickness. The rotation center was set outside the muscle. 
The rotation radius was 12.5 cm, which included the length 
of the transducer. The transducer rotationally scanned the 
sample from 0 to 360 degrees with a step size of 2.25 de- 
grees, and at each stop a set of sector directions from —12 to 
12 degrees with a step size of 2 degrees was scanned. Totally, 
2080 scan lines were acquired to construct 2D cross-section 
images. Figure 5(b) was constructed directly from the piezo- 
electric signals, which was in good agreement with the origi- 
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nal profile in Fig. 5(a). The boundaries between the fat and 
muscle or oil are clearly visible, except the rear boundary of 
the muscle. Figure 5(c) was constructed from the first deriva- 
tives of the piezoelectric signals, which agreed with the 
original profile of Fig. 5(a) very well. The boundary of the 
muscle was clearer than that in Fig. 5(b). In particular, the 
sizes and locations of the muscle and fat zones agreed with 
the original shapes. It indicates that the first derivative pro- 
duces a better mapping of the microwave absorption distri- 
bution than the piezoelectric signal, i.e., the thermoacoustic 
pressure. Due to the high microwave absorption in muscle 
and the low absorption in fat, the muscle and fat can be 
differentiated by their "brightness" in the images. 

In the above examples, the size deviations between the 
original objects and their constructed images are about 2 
mm, which agree with the theoretical spatial resolution ap- 
proximations as follows. The axial resolution along the 
acoustic axis is dependent on the width of the microwave 
pulse (0.5 fis) plus the width of the impulse response of the 
transducer (1.5 /JLS); therefore, it should be approximately 3 
mm, because the velocity of the acoustic waves in the tissue 
is about 1.5 mm/yus. The lateral resolution is determined by 
the focal diameter of the focused transducer, ~2 mm for the 
1 MHz transducer used in the above experiments. The use of 
shorter microwave pulses and narrower focal diameter ultra- 
sonic transducers can improve the spatial resolution.3 

V. CONCLUSION 

Microwave-induced thermoacoustic tomography of inho- 
mogeneous tissues by using multiple sector scans was stud- 
ied. Cross-sectional images can be obtained by a few 
straightforward calculations from the temporal data acquired 
by a focused transducer rotationally sector scanning the 
samples. The experiments show that the constructed images 

are in good agreement with the original cross-section profiles 
of the samples, and the boundaries between different tissues 
are clearly imaged. Results indicate that this technique is a 
powerful imaging method with good spatial resolution that 
can be used for the investigation of inhomogeneous tissues. 
In the future, a circular array could be used to replace the 
single transducer, and some numerical compensation meth- 
ods could be introduced to improve the spatial resolution 
further. 
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We have applied the synthetic-aperture method to linear-scanning microwave-induced thermoa- 
coustic tomography in biological tissues. A nonfocused ultrasonic transducer was used to receive 
thermoacoustic signals, to which the delay-and-sum algorithm was applied for image reconstruc- 
tion. We greatly improved the lateral resolution of images and acquired a clear view of the circular 
boundaries of buried cylindrical objects, which could not be obtained in conventional linear- 
scanning microwave-induced thermoacoustic tomography based on focused transducers. Two mi- 
crowave sources, which had frequencies of 9 and 3 GHz, respectively, were used in the experiments 
for comparison. The 3 GHz system had a much larger imaging depth but a lower signal-noise ratio 
than the 9 GHz system in near-surface imaging. © 2001 American Association of Physicists in 
Medicine.   [DOI: 10.1118/1.1418015] 

Key words: thermoacoustics, tomography, synthetic aperture, microwave 

I. INTRODUCTION 

Microwave-induced thermoacoustic tomography is emerging 
as a nonionizing imaging modality. When electromagnetic 
radiation is irradiated upon biological tissues, the resulting 
heat-related expansion of the tissues produces acoustic 
waves. From the acoustic signals, we can reconstruct the 
distribution of electromagnetic absorption in soft tissues. The 
large differences in electromagnetic absorption in various tis- 
sues, which are associated with their physiological and 
pathological status, provide significant contrasts in imaging. 
For example, the absorption coefficient in cancerous breast 
tissue is two to five times greater than that in normal breast 
tissue, due to the increment of water and sodium bounded 
within malignant cells.1"3 This large difference makes it 
promising to use microwave-induced thermoacoustic tomog- 
raphy to detect breast cancers. 

Microwave-induced thermoacoustic tomography com- 
bines the advantages of both pure ultrasound and pure mi- 
crowave imaging. Traditional imaging technology with pure 
ultrasound (ultrasonography) offers satisfactory spatial reso- 
lution but poor soft-tissue contrast, while pure microwave 
imaging provides good imaging contrast but barren spatial 
resolution.4"7 Microwave-induced thermoacoustic tomogra- 
phy bridges the gap between them. By integrating ultrasound 
and microwave technology, microwave-induced thermoa- 
coustic tomography has both satisfactory spatial resolution 
and good soft-tissue contrast. 

In conventional linear-scanning microwave-induced ther- 
moacoustic tomography (LMTT), a focused ultrasonic trans- 
ducer is used to detect time-resolved acoustic signals. Since 
the focused transducer has a good response only along the 
transducer axis, each acoustic signal can be converted into a 
one-dimensional image. Linear scanning of the ultrasonic 
transducer yields multiple one-dimensional images, which 
can be combined to form a two-dimensional image of the 

sample.8"10 In the two-dimensional images obtained with 
conventional LMTT, only boundaries that are nearly perpen- 
dicular to the axis of the ultrasonic transducer can be de- 
tected because most of the thermoacoustic waves travel in a 
small solid angle around the normals of boundaries; spheri- 
cal or oblique boundaries of buried objects whose thermoa- 
coustic waves have a large angle with the axis of the ultra- 
sonic transducer cannot be imaged because the ultrasonic 
transducer receives little signal from these boundaries. 

To overcome this deficiency of traditional LMTT, we 
have applied the synthetic-aperture method to LMTT. In this 
method, thermoacoustic signals were detected from multiple 
locations and the synthetic delay-and-sum algorithm was 
then used for the reconstruction of the images. The synthetic- 
aperture method has been applied in PAT previously;11"14 

and weights were assigned to the signals according to the 
sensor's directivity to improve the SNR at the expense of 
lateral resolution. In our experiment, the raw data were ob- 
tained by a 2.25 MHz nonfocused transducer instead of a 
focused one, as in traditional LMTT, and the synthetic- 
aperture reconstruction method based on the delay-and-sum 
algorithm was applied to reconstruct the images. By applying 
the synthetic-aperture method, we have improved the lateral 
resolution of the images and enhanced our ability to image 
spherical or oblique boundaries in the samples. Images ac- 
quired from two microwave sources with different frequen- 
cies were compared; the 3 GHz system has a much larger 
imaging depth but a lower SNR than the 9 GHz system in 
near-surface imaging. 

II. METHODS 

A. Reconstruction method 

The image reconstruction method is illustrated in Fig. 1. 
For convenience, we converted both the signal-delay time 
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FIG. 1. Scanning and reconstruction method. 

and the spatial distance into the number of pixels according 
to the speed of the acoustic wave traveling in the media. For 
the 50 MHz sampling rate, 1 /u,s=50 pixels= 1.5 mm. 

Because the transducer is nonfocused, it receives signals 
from a larger solid angle than does a focused counterpart. In 
the reconstruction, we evenly projected the signals to each 
point within the whole solid angle according to the time 
delay. The time delay corresponds to the distance from the 
transducer to the point to which we project the signal. This is 
the algorithm called "delay and sum." In other words, the 
signal intensity of each point A{i,j) is the sum of the signals 
from the transducer at different positions delayed with the 
transit time from the transducer position to the point. So the 
signal intensity at any point, A(i,j), can be expressed as 

M 

A(i,j)=^Z B(k,l), 

where B(k,l) is the signal intensity coming from the /th 
pixel point in the signals and from the kth transducer scan- 
ning position, M is the total number of steps that the trans- 
ducer scanned, and / is the distance from the kth transducer 
scanning position to the point (ij): 

l=J{k-i)2+j\ 

Let us consider a point (i\J\) where there is a thermoa- 
coustic source. During the data acquisition, all the detectors 
will receive signals from this particular point after time de- 
lays determined by the above equation. Conversely, in the 
reconstruction, all the detectors contribute signals to this par- 
ticular point with the appropriate time delays. On the other 
hand, for a point (/'2J2) where there is no source, few de- 
tectors contribute signals to this point after time delays de- 
termined by the above equation. Consequently, the recon- 
structed intensity at point (i\,j\) will be much greater than 
that at point (i2,ji)- In this reconstruction scheme, the de- 
tection can be artificially focused onto any specified point 
(i,j), which is the basic concept of synthetic aperture. 

We attempted to add some corrections to the delay-and- 
sum algorithm but found them unnecessary. For example, we 

Pulse amplifier 

Translation stage Oscilloscope 

Waveguide 

Microwave generator Function generator Computer 

FIG. 2. Experimental setup. 

tried applying weights to the signals according to the trans- 
ducer's directivity, as was done previously. It improved the 
SNR, but the lateral resolution deteriorated as a result. In our 
situation, we had already acquired a satisfactory SNR by 
averaging the thermoacoustic signals 100 to 200 times, indi- 
cating that the direct delay-and-sum algorithm works well in 
LMTT technology. 

B. Experimental setup 

The experimental setup for this study is shown in Fig. 2. 
A Cartesian system was set up for reference. The z axis is 
along the ultrasonic axis pointing downward. The x axis is 
perpendicular to the drawing plane and pointed outward. The 
v axis is in the drawing plane and points to the right. 

In the experimental setup, microwave pulses of 9 or 3 
GHz, with a width of 0.5 /JUS were delivered into the samples. 
The sizes of the cross section of waveguides were 72 mm 
X34mm in the 3 GHz system and 23mmX 10 mm in the 9 
GHz system. A function generator (DS345, Stanford Re- 
search System) was employed to trigger the microwave 
pulses and synchronize the sampling of an oscilloscope. A 
linear translation stage (MD2, Arrick Robotics), on which an 
ultrasonic transducer was mounted, was driven by a 
computer-controlled stepper motor. The transducer was 
scanned linearly. The nonfocused ultrasonic transducer 
(V323, Panametrics) mounted on the translation stage had a 
central frequency of 2.25 MHz and a 6 mm diam of an active 
element. A low-noise pulse preamplifier (500 PR, Panamet- 
rics) amplified the acoustic signals coming from the trans- 
ducer. Then the amplified signals were collected and aver- 
aged by an oscilloscope (TDS-640A, Tektronix) and 
subsequently transferred to a personal computer. The acous- 
tic waves from the sample were coupled to the ultrasonic 
transducer by mineral oil. 

III. RESULTS AND DISCUSSION 

In this section, we will present and discuss the images 
acquired from the 3 GHz microwave system and the 9 GHz 
microwave system, respectively. The first two sets of images 
were acquired from the 9 GHz system. In the first set of 
images, we imaged a semicylindrical fat sample with a 
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FIG. 3. (a) Cross-sectional picture of the sample with two curved boundaries 
marked with (1) and (2); (b) raw data of thermoacoustic signals acquired 
with the 9 GHz system, where the signals from the two curved boundaries 
are marked with (1) and (2), respectively; (c) image after the reconstruction, 
where the images of the two curved boundaries are marked with (1) and (2), 
respectively. 

simple structure to verify the synthetic-aperture method. In 
the second set of images, we imaged a small fat cylinder 
containing several detailed structures. The third set of images 
was acquired, using the 3 GHz system, from two muscle 
cylinders buried in an ellipse of pork fat. Comparing the last 
two sets of images demonstrates the effects of different ob- 
ject shapes and the different frequencies of the microwave 
sources. 

A. Results 

The sample in the first set of images is a semicylinder of 
pork fat immersed in mineral oil. Figure 3(a) shows a cross 
section of the semicylinder with two curved boundaries 
marked by (1) and (2). The transducer is on the left side of 
the picture, pointing to the sample and moving along the 
ruler. The original signals from the transducer are shown in 
Fig. 3(b). Because the thermoacoustic waves were propagat- 
ing almost perpendicularly to the boundaries, the lateral sig- 
nals (1) and (2) in Fig. 3(b) were from the corresponding 
curved boundaries (1) and (2) in Fig. 3(a). After reconstruc- 
tion, the original signals (1) and (2) formed the curved 
boundaries (1) and (2) of the semicylinder in Fig. 3(c). The 
synthetic-aperture method was proved to be effective in im- 
aging the curved boundaries. The flat boundary of the semi- 
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FIG. 4. (a) Cross-sectional picture of the sample, a pork fat cylinder with one 
layer of connective tissue (1) and discrete layers of muscle; (b) raw data of 
thermoacoustic signals acquired with the 9 GHz system; (c) Image after the 
reconstruction, where the images of the connective tissue layer is marked 
with (1). 

cylinder is not visible in the image because this boundary 
was parallel to the axis of the transducer. The thermoacoustic 
waves from this flat boundary traveled perpendicularly to the 
axis of the transducer and never reached the transducer. 

In the second set of images, Fig. 4(a) is the cross section 
of the sample, which was a pork fat cylinder with one layer 

* of connective tissue (1) and several small pieces of muscle. 
The transducer was mounted on the left side of the picture, 
pointing to the sample and moving along the ruler. The im- 
ages before and after reconstruction are shown in Fig. 4(b) 
and Fig. 4(c), respectively. The reconstructed image de- 
scribes the structure of the sample very well. The connective 
tissue across the cylinder has been imaged clearly, as marked 
by (1) in Fig. 4(c). The muscles have been imaged as three 
slides parallel to each other because of the different distances 
between the muscles and the transducer. Because of the lat- 
eral convolution effect caused by the 6 mm diam of the 
transducer, the images of the muscles were stretched and 
overlapped along the y direction. 

In the 9 GHz system, because of the small cross-sectional 
area in the 9 GHz waveguide, the microwaves were incident 
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FIG. 5. (a) Cross-sectional picture of the sample, an ellipse of pork fat 
containing two muscle cylinders; (b) raw data of thermoacoustic signals 
acquired with the 3 GHz system; (c) image after the reconstruction. 

upon the sample from the right to the left side along the 
transducer axis but in the opposite direction. In this case, the 
thermoacoustic waves emitted from the left curved edge 
were smaller than those emitted from the right curved edge. 
One reason is that the strong microwave absorption of the 
sample, especially the muscle layers in the sample in Fig. 4, 
decreased the intensity of the microwave field on the left 
side. The other reason is that the distribution of the micro- 
wave field, without considering sample absorption, also de- 
creased with increasing distance from the sample to the out- 
let of the waveguide. Therefore, the left boundary of the 
sample in Fig. 4(c) is much weaker than the right one. 

In the above two images acquired with the 9 GHz system, 
objects in the right part of the image produce a mirror image 
due to reflected thermoacoustic waves from the boundaries 
of the container. The reflected signals could be eliminated by 
time gating, but for comparison they were kept to maintain 
the same image scale as the images from the 3 GHz system. 

The third set of images shown in Fig. 5 was gathered with 
the 3 GHz system. Shown in Fig. 5(a) is a cross section of 
the sample, which was an elliptic slab of pork fat with two 
muscle cylinders buried inside. With the sample being im- 
mersed in the mineral oil, the transducer pointed to the 

sample from the left side and moved along the ruler. In the 3 
GHz system, the microwaves were incident upon the sample 
perpendicularly to the picture and pointed outward, which 
made the microwaves evenly distributed in the cross section 
of the sample. In the original signal data in Fig. 5(b), the 
signals from the muscle cylinder and the edge of the pork fat 
are spread into a hyperbola with similar shapes. The signals 
from the two muscle cylinders even cross each other in the 
center. After the reconstruction, the rebuilt image shown in 
Fig. 5(c) is in good agreement with the real sample shown in 
Fig. 5(a). 

B. Discussion 

From all of the images above, it is clear that the image 
resolution of curved boundaries of samples and of small cyl- 
inders is worse than that of horizontal boundaries, which 
emit thermoacoustic waves along the transducer axis. For 
example, the axial resolution of the slabs in Fig. 4(c) is much 
better than that of the two small cylinders in Fig. 5(c). The 
reason is that when the thermoacoustic wave does not come 
from the center of the transducer's receiving solid angle, it 
may reach different parts of the transducer surface at differ- 
ent times. In this case, the pulse signal is broadened and this 
broadening of the pulse is proportional to the dimensions of 
the transducer surface. If the thermoacoustic waves come 
from the center of the receiving solid angle of the transducer, 
the resolution is optimized. The propagating direction of 
most thermoacoustic waves from curved boundaries and 
small cylinders have large angles with the transducer axis. In 
other words, when the transducer detects these thermoacous- 
tic waves, they are not from the center of the receiving solid 
angle. Therefore even after reconstruction, the axial resolu- 
tion of the curved boundaries or small cylinders has been 
compromised. Also because of the 6 mm diam of the trans- 
ducer, all of the images have been stretched along the y di- 
rection and the lateral resolution has deteriorated. Therefore, 
the diameter of the active element of the transducer is a key 
to both the axial and lateral resolutions. We can alleviate the 
effect of stretching and improve the axial resolution of the 
images by reducing the diameter of the transducer at the cost 
of losing the SNR. 

Comparing the above images before and after reconstruc- 
tion, the SNR has been greatly improved by the reconstruc- 
tion. In the delay-and-sum algorithm, the signal intensity of 
every point is the sum of the signals from different positions 
that the transducer scanned. From the perspective of the SNR 
and randomization of the noise, summing up signals from k 
different positions has the equivalent effect of averaging the 
signal k times and will increase the SNR by \[k times. We 
can take advantage of this property to greatly reduce our 
average time in data acquisition and the dose of microwaves. 

A comparison of the images in Fig. 4(c) and Fig. 5(c) 
shows that the 3 GHz system has a much larger image vol- 
ume than the 9 GHz system due to the deeper penetration 
depth of the microwaves with a lower frequency and a larger 
cross section of the waveguide. For microwaves of 3 GHz, 
the penetration depths for muscle and fat are 1.2 and 9 cm, 
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respectively, and for microwaves of 9 GHz, the penetration 
depths for muscle and fat are 0.27 and 2.6 cm. The depth we 
can image in the tissues is proportional to the penetration 
depth of the microwaves in the tissue. On the other hand, in 
near-surface imaging the 9 GHz setup has a better SNR than 
the 3 GHz system due to the larger attenuation of 9 GHz 
microwaves and the higher-power density of the microwave 
source. 

In traditional LMTT, the ghost caused by the relatively 
small diameter of the focused transducer affects the lateral 
resolution. In synthetic aperture, the scanning nonfocused 
transducer can be artificially focused onto any specified point 
and the effect equals a focused transducer with a diameter of 
the scanning dimension. The large diameter, which is much 
larger than the diameter of the focused transducer used in 
conventional LMTT, greatly reduces the ghost and, therefore, 
improves the lateral resolution of the image. 

In our study we point out that, compared with traditional 
LMTT, the synthetic-aperture method is effective for im- 
proving the lateral resolution of images and imaging the 
curved boundaries in samples. The resolution of the images 
can be further improved by reducing the diameter of the 
transducer or applying deconvolution with respect to the fi- 
nite size of the transducer surface. 

According to the IEEE standard, our case involves expo- 
sures under a controlled environment, which means the ex- 
posure is incurred by persons who are aware of the potential 
of exposure. For both the 3 and 9 GHz microwaves under a 
controlled environment, the upper limit of safe exposure is 
10 mW/cm2. If it is used for partial body exposure, the upper 
limit is relaxed to 20 mW/cm2 for 3 GHz microwaves and 
22.1 mW/cm2 for 9 GHz microwaves. The peak power of our 
3 GHz microwave generator is 10 kW; the microwave pulse 
width is 0.5 /is; the pulse repetition rate is less than 40 Hz; 
and the outlet of the microwave generator is 72 mm 
X34mm. As a result, the power density of the 3 GHz mi- 
crowave system is 8.2 mW/cm2. The peak power of our 9 
GHz microwave generator is 25 kW; the microwave pulse 
width is 0.5 /*s; the pulse repetition rate is about 2 Hz; and 
the outlet of the microwave generator is 23mmX10mm. 
Consequently, the power density of the 9 GHz microwave 
system is 10.9 mW/cm2. Further, we assumed that the entire 
microwave has been coupled out of the waveguide without 
divergence. In practice, however, only part of the microwave 
is coupled out of the waveguide and diverged into a much 
larger area than the outlet of the waveguide. The power den- 
sities used in our experiments are below the limits of the 
IEEE standard and are safe to humans. 

IV. CONCLUSIONS 

The synthetic aperture, which has never been used in 
LMTT, is proved to be a powerful image reconstruction 
method. The reconstruction method based on the delay-and- 
sum algorithm has been verified to work well in LMTT be- 
cause of its ability to image curved boundaries in samples, to 
improve the lateral resolution, and to reduce the noise of the 
system. The large diameter of the transducer causes resolu- 

tion deterioration; the diameter can, however, be reduced to 
improve the resolution at the expense of the SNR. The com- 
parison of the images shows that the 3 GHz system has a 
larger imaging volume but a poorer SNR than the 9 GHz 
system in near-surface imaging. 
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Time-Domain Reconstruction for Thermoacoustic 
Tomography in a Spherical Geometry 

Minghua Xu and Lihong V. Wang* 

Abstract—Reconstruction-based microwave-induced thermoa- 
coustic tomography in a spherical configuration is presented. 
Thermoacoustic waves from biological tissue samples excited 
by microwave pulses are measured by a wide-band unfocused 
ultrasonic transducer, which is set on a spherical surface enclosing 
the sample. Sufficient data are acquired from different directions 
to reconstruct the microwave absorption distribution. An exact 
reconstruction solution is derived and approximated to a modified 
backprojection algorithm. Experiments demonstrate that the 
reconstructed images agree well with the original samples. The 
spatial resolution of the system reaches 0.5 mm. 

Index Terms—Microwave, reconstruction, thermoacoustic, 
tomography. 

I. INTRODUCTION 

PULSED-MICROWAVE-INDUCED thermoacoustic to- 
mography in biological tissues combines the advantages 

of pure microwave imaging [l]-[3] and Pure ultrasound 
imaging [4], [5]. The wide range of microwave absorption 
coefficients found in different kinds of tissue leads to a high 
imaging contrast for biological tissues. However, it is difficult 
to achieve good spatial resolution in biological tissues using 
pure microwave imaging because of the long wavelength of 
microwaves. This problem can be overcome by the use of mi- 
crowave-induced thermoacoustic waves. Because the velocity 
of acoustic waves in soft tissue is ~1.5 mm/fis, thermoacoustic 
signals at megahertz can provide millimeter or better spatial 
resolution. 

In thermoacoustic tomography, a short-pulsed microwave 
source is used to irradiate the tissue. The relatively long 
wavelength of the microwave, e.g., ~3 cm at 3 GHz in tissues, 
serves to illuminate the tissue homogeneously. A wide-band 
ultrasonic transducer can then be employed to acquire the 
thermoacoustic signals excited by thermoelastic expansion, 
which carries the microwave absorption property of the tissue. 
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The ultrasonic transducer is very sensitive in detecting small 
thermoacoustic vibrations from an object. 

The key problem with this technique is how to determine 
the microwave absorption distribution from the measured 
data, i.e., how to map the inhomogeneity of the tissue. One 
approach is to use focused ultrasonic transducers to localize 
the thermoacoustic sources in linear or sector scans and then 
construct the images directly from the data as is often done in 
pulse-echo ultrasonography [6], [7]. An alternative method is 
to use wide-band point detectors to acquire thermoacoustic data 
and then reconstruct the microwave absorption distribution. 
To date, we have not seen an exact inverse solution for this 
specific problem, although some researchers have arrived at 
approximate reconstruction algorithms, such as the weighted 
delay-and-sum method [8], the optimal statistical approach [9], 
and other approach [10]. 

Based on spherical harmonic functions, in this paper we first 
deduce an exact solution to the problem in three-dimensional 
spherical geometry, which can be carried out in the frequency 
domain [ 11 ]-[ 14]. The exact reconstruction algorithms in planar 
and cylindrical geometries are reported in the companion pa- 
pers [15], [16]. Spherical measurement geometry may be more 
suitable for investigation of external organs such as the breast. 
We assume that the wide-band unfocused ultrasonic transducer 
is set on a spherical surface, which encloses the sample under 
investigation. The data acquired from different directions are 
sufficient to allow us to reconstruct the microwave absorption 
distribution. 

In many cases, the diameter of the sphere of detection is much 
larger than the ultrasonic wavelength. As a result, an approximate 
algorithm can be deduced, which is a modified backprojection of 
a quantity related to the thermoacoustic pressure. This approxi- 
mate algorithm can be carried out in the time domain and is much 
faster than the exact solution. In our initial investigations, we have 
also tested tissue samples in a circular measurement configura- 
tion. These experiments demonstrate that the images calculated 
by the modified backprojection method agree well with the orig- 
inal samples. Moreover, the images have both the high contrast 
associated with pure microwave imaging and the 0.5-mm spatial 
resolution associated with pure ultrasonic imaging. 

II. THEORY 

A. Fundamental of Thermoacoustics 

Thermoacoustic theory has been discussed in many literature 
reviews such as [13]. Here, we briefly review only the funda- 
mental equations. If the microwave pumping pulse duration is 
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much shorter than the thermal diffusion time, thermal diffusion 
can be neglected; consequently, the thermal equation becomes 

pCp^T(r,t) = H(r,t) (1) 

where p is the density; Cp is the specific heat; T(r, t) is the 
temperature rise due to the energy pumping pulse; and H(r, t) 
is the heating function defined as the thermal energy per time 
and volume deposited by the energy source. We are initially 
interested in tissue with inhomogeneous microwave absorption 
but a relatively homogeneous acoustic property. The two basic 
acoustic generation equations in an acoustically homogeneous 
medium are the linear inviscid force equation 

Transducer 

p^u(T,t) = -Vp(T,t) 

and the expansion equation 

V.u(M) = -^^ + /?T(r,<) 

(2) 

(3) 

where ß is the isobaric volume expansion coefficient; c is the 
sound speed; u(r, t) is the acoustic displacement; and p(r, t) 
is the acoustic pressure. 

Combining (lH3), the pressure p(r, t) produced by the heat 
source H(r, t) obeys the following equation: 

ß   9H(r,t).      (4) 

Fig. 1.    Acoustic detection scheme. The ultrasonic transducer at position r0 

records the thermoacoustic signals on a spherical surface with radius |r — r0|. 

where the following Fourier transform pair exists: 
/+oo 

p(r0, t) exp(iwt) dt, (11 a) 
-OO 

V2p(r,<)-^P(r,*) = cp at 
l   r+oa 

P(r0, *)=2^/       p(ro,u)exp(-iut)<L;.        (1 lb) 

The solution based on Green's function can be found in the lit- 
erature of physics or mathematics [12], [14]. A general form can 
be expressed as 

ß      fff   dV    dH(r',t') 
p(r, *) = 

47TC, ///i r'| dt' t'=t-(|r-r'|/c) 

(5) 
The heating function can be written as the product of a spatial 
absorption function and a temporal illumination function 

H(r, t) = A(r)I(t). (6) 

Thus, p(r, i)can be expressed as 

^t)=AII!w^\mm    (7) 
where J'(i') = dl(t')/dt'. 

B. Exact Reconstruction Theory 

We first solve the problem where the pulse pumping is a Dirac 
delta function 

We next derive the exact solution using the spherical har- 
monic function basis. In the derivation, we referred to the 
mathematical techniques for ultrasonic reflectivity imaging 
[11]. The mathematics utilized can also be found routinely 
in the mathematical literature, such as [12]. Here, we list the 
identities (12a)—(12f) used in the subsequent deduction: 

1) The complete orthogonal integral of spherical harmonics 
Yr(0o, <Po) 

II YT(6o, VoW (0o, Vo) dtlo = Si, k6m,„        (12a) 

where dOo = sin f?o dßo dcpo and * denotes the complex 
conjugate. 

2) The Legendre polynomial 

4 +' 
P'(n'no) = 2ZTT   ^   YTW'VW"* (0o, <Po)    (12b) 

ri=s—/ 

I(t)=8(t). (8) 

where the unit vectors n and n0 point in the directions 
(6, (p) and (80, <p0), respectively 

3) The orthogonal integral of Legendre polynomials, derived 
from (12a) and (12b) 

Suppose the detection point on the spherical surface r = ro, 
which encloses the sample (Fig. 1). By dropping the primes, (7) 
may be rewritten as 

II dn0Pi(n • n0)Pm(n' • n0) 
47T 

2/ + 1 
Ä,mfl(n-n') (12c) 

p(ro,t)=VJJJd3rA(r) (9) 
47r|r0 - r| 

where r) — ß/Cp. The inverse problem is to reconstruct the ab- 
sorption distribution A(r) from a set of datap(r0, t) measured 
at positions r0. Taking the Fourier transform on variable t of (9), 
and denoting k = w/c, we get 

p(r0, ») = -M ll\ d*rA(r) ^^       (10) 

where the unit vector n' = r'/r' points in the direction 

4) The expansion identity 

expMro-rj) = ik g      + 1)>|(fcr)Äti)(fcn,)fl(n . ^ 
r 47T ■i—' 1 1=0 

(k > 0) (12d) 

where n = r/r, n0 = r0/r0, ji(-) and /)■[(•) are the 

47r|r0 ■ 

spherical Bessel and Hankel functions, respectively. 
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5) The complete orthogonal integral of Bessel functions 

J      dkk2jm{kr)jm{kr') = ^2 6(r - r')- (12e> 

6) The summation identity of Legendre polynomials 

53(2m + l)Pm(n-n') = ,,     4sr«(0 - 6')8{ip - </) 

m=0 
sin0 

(12f) 

First, substituting (12d) into (10), we obtain 

p(ro, ») = '^jjj d3rA(r) f) (21 + l)j,(*r) 

^(AroJflCn.no).    (13) 

Then, multiplying both sides of (13) by PTO(n' • n0), and inte- 
grating with respect to no over the surface of the sphere, and 
considering the identity (12c), we obtain 

// dtt0p(r0, w)Pm(n' • n0) 

71 •'•'•' 1=0 

ff dn0Pi{n-n0)Pm(ri -n0) 

f[[<PrA{T) f] {2l+l)jl{kr)hf\krQ) ^- 

Q0 

u>kr] 

4-K 

■ 6imPi(n ■ n') 

fcV IIId3rA(r)jm(kr)h^(kr0)Pm(n - n') 

i.e., 

#dü0p{ro, w)Pm(n' • n0) -TJT - 
hW(kr0) 

= AV /// ^'A(r)im(Ar)Pm(n • n').   (14) 

Further, multiplying both sides of (14) by jm(kr'), integrating 
them with respect to k from zero to +oo, and then multiplying 
both sides of (14) again by (2m +1) and summing m from zero 
to oo, and considering the identity (12e) and (12f), we get 

ff^n    [+°°ju~f        ^ V^  (2m+l)jm(fcrQ p      ; // tin0 /       *p(r0, w) >     ^ jrf—i-—'- PTO(n • n0) 
JJ Jo „,=n       hw(kro) m=0 "™ 

= 7]c III d\A(r) Y2 (2m + l)Pm(n • n') /       dkk' 

■ jm{kr')jm{kr) 

^^ ring "S3*(r-r) 

= 2?r2r?c^(r'). 

Finally, dropping the primes, we can rewrite the equation as 

A(r) = äfe / dfi° i    Äj5(r°'w) 

£ (2m + l)jm(kr) 

^o       lim (Ar0) 
Pm(n-n0).    (15) 

This is the exact inverse solution of (9). It involves summation 
of a series and may take much time to compute. Therefore, it is 
desirable to further simplify the solution. 

C. Modified Backprojection 

In experiments, the detection radius TQ is usually much larger 
than the wavelengths of the thermoacoustic waves that are useful 
for imaging. Because the low-frequency component of the ther- 
moacoustic signal does not significantly contribute to the spatial 
resolution, it can be removed by a filter. Therefore, we can as- 
sume \k\r0 > 1 and use the asymptotic form of the Hankel 
function to simplify (15). The following two identities are in- 
volved [12]: 

1) The expansion identity similar to (12d) 

exp(-^|r0 - r|) _-ifc g(2m+1)jm(fcr) 
45r|r0 ■ 4w 

m=0 

■h%>(kr0)Pm(n-n0),        (k > 0).   (16a) 

2) The approximation when \k\r0 > 1 

tf'><fco,0skj(<^+0(w)) (16b) 

where h\,   (•) is the spherical Hankel function of the 
second kind. 

Substituting (16b) into (15), we get 

A(r) « ^-i— JJ dn0 J      dkp(v0, u)k2rl >T (2m + 1) 

■jm(kr)h^(kr0)Pm(n-n0).    (17) 

Considering the form of (16a), the above equation can be 
rewritten as 

A(r)=^f_ JJdüoJ °° dkp(r0, u)(ik) 

Oo 

exp(-ifc|r0 - r|) 

lro - r| 

r2    rr      l   r+°° 
-ICJ) 

too 

exp(-io;M) 

lro - r| 
Because p(r, t) is a real function, p*(r, u) =p(r, -w). Taking 
the summation of the above equation with its complex conjugate 
and then dividing it by two, we get 

A(v)=^§-   II dÜ0 J °°dkp(v0, u)(ik) 

_ exp(-iifc|ro - r|) 

lro - r| 

2i^i](? 

2 /y i        />+oo 

^i/^0^/-co^(r0'")HW) 

exp l — tu 

lro - r| 
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Recalling the inverse Fourier transform (1 lb), we get 
-2        " 1        dp(To,t) 

A(T) = - 
2irr)c? V?JJ 

(Klo 
r0- 

i.e., 

A(r) = - rl 
2irqd IS 

n0 

d£lo 

-r|       M 

1 dp(r0, t) 
t 

(18) 
t=\r0-r\/c 

at (19) 
t=|r0-r|/c 

Equation (19) shows that the absorption distribution can be 
calculated in the time domain by the means of backprojection 
and coherent summation over spherical surfaces of the quantity 
-(l/t)(dp(r0, t)/dt) instead of the acoustic pressure itself. 
This approximate algorithm requires less computing time than 
the exact solution (15). 

For initial investigations, we measure the samples in a circular 
configuration. In these cases, the backprojection is carried out 
in a circle around the slices, and (19) can be simplified to 

A(r) rl 
2TTT]C

4 I 1 dp(r0, t) 
d(p°-t—di— (20) 

t=|r0-r|/c 

III. EXPERIMENTAL METHOD 

A. Diagram of Setup 

Fig. 2 shows the experimental setup for the circular measure- 
ment configuration, which is modified from our previous paper 
[7]. For the convenience of the reader, the system is briefly de- 
scribed here. The unfocused transducer (V323, Panametrics) has 
a central frequency of 2.25 MHz and a diameter of 6 mm. It is 
fixed and it points horizontally to the center of the rotation stage, 
which is used to hold the samples. For good coupling of acoustic 
waves, both the transducer and the sample are immersed in min- 
eral oil in a container. 

The microwave pulses are transmitted from a 3-GHz mi- 
crowave generator with a pulse energy of 10 mJ and a width 
of 0.5 ^ts, and then delivered to the sample from the bottom 
by a rectangular waveguide with a cross section of 72 mm x 
34 mm. A function generator (Protek, B-180) is used to trigger 
the microwave generator, control its pulse repetition frequency, 
and synchronize the oscilloscope sampling. The signal from 
the transducer is first amplified through a pulse amplifier, 
then recorded and averaged 200 times by an oscilloscope 
(TDS640A, Tektronix). A personal conputer is used to control 
the step motor for rotating the sample and transferring the data. 

Last, we want to point out that, in our experiments, the 
smallest distance ro between the rotation center and the 
surface of the transducer is 4.3 cm. In the frequency domain 
(100 KHz-1.8 MHz), \k\r0 = 2-wr0f/c with 1.5 mm/^s, we get 
18 < \k\r0 < 330. Therefore, the required condition |fc|r0 > 1 
for the modified backprojection algorithm is satisfied. 

B. Technical Consideration 

During measurement, we find that the piezoelectric signal 
<SVj(i*o, t) detected by the transducer includes the thermal 
acoustic signal S(TQ, t) as well as some noise. The noise 
comes from two contributors. One is the background random 
noise of the measurement system, which can be suppressed by 
averaging the measured data. The other part, Smp(t), results 
from the microwave pumping via electromagnetic induction. 

Step motor 

=o 

Driver 

Mineral oil 

^ 
Sample     Transducer 

T= 

Microwave generator ► 

Computer 

Pulse amplifier 

Function 
generator 

Oscilloscope 

Fig. 2.    The experimental setup. 
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Fig. 3. (a) The temporal profile of the microwave pulse; (b) the temporal 
profile of the impulse response of the transducer; (c) compare the normalized 
amplitudes of the spectrum I(f)R(f), G(f) and fG(f). 
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Fig. 4. (a) An example of temporal piezoelectric signal; (b) an example of 
temporal noise; (c) an example of filtered signal; and (d) an example of filtered 
thermoacoustic signals detected at different angular positions from 0° to 360°. 

The pumping component of the noise can be measured without 
a sample, and can be subtracted from the measured data 

5(r0, t) w 50(r0, t) - Smp(t). (21) 

In fact, the transducer is not a real point detector. For sim- 
plicity, we can ignore its size if we put it far away from the 
sample. However, we still have to consider the impulse response 
R(t) of the transducer and the pumping duration lit) of the mi- 
crowave pulse. In general, the measured thermoacoustic signal 
can be written as a convolution 

S(r0,t)=p(vü,t)*I(t)*R(t) (22) 

where p(r0, t) is the thermoacoustic signal with delta-pulse mi- 
crowave pumping. In the frequency domain, (22) can be written 
as 

S(r0, w) = p(r0, u)I(w)R(u) (23) 

where 
/-t-oo 

I(t) exp(iujt) dt, (24a) 
-oo 

/+oo 
R(t) exp(iojt) dt. 

-OO 

(24b) 

Because of the presence of noise and the finite bandwidth of 
J(w) and .R(w), an appropriate deconvolution algorithm should 
be used to calculate p(r0, w). In the reconstruction, only the 
high-frequency component of the thermoacoustic signal is re- 
quired. Therefore, we compute p(r0, LJ)G(LJ) instead, where 
G(u)) is a high-frequency bandpass filter such as a Gaussian 
filter 

G(w) exp 
Vwo       / 

and a and wo are two parameters of the filter, w = 2irf and 
u0 = 27T/0. 

In our experiments, I(t) is approximately a rectangular func- 
tion with duration T = 0.5 /JS and its temporal profile is shown 
in Fig. 3(a). Its spectrum J(w) covers the range from 0 to 2 MHz. 
The transducer that we used is of the videoscan type with a cen- 
tral frequency of /o = 2.25 MHz, and the temporal profile of 
the impulse response is shown in Fig. 3(b). It is observed that 
the generated thermoacoustic signal under microwave pumping 
with duration r = 0.5 fxs exists primarily in a frequency range 
below 1.8 MHz. We chose the parameters a = 3.6 and /o = 
1.25 MHz in the Gaussian filter 

2" 

G(f) =exp -<M 
to eliminate the noise at high as well as low frequencies. The 
spectrum G(f) is shown as the dash-dot line in Fig. 3(c). 
We compared the normalized spectrum I(f)R(f) [solid line 
in Fig. 3(c)] with fG(f) [dash line in Fig. 3(c)], and found 
|/G(/)| « \I(f)R(f)\ when / < 2 MHz. Of course, this 
approximated equality is a special case for our measurement 
system only. Therefore, the filtered dp(r0, t)/dt can be simply 
calculated by an inverse fast Fourier transform (IFFT) 

dp{r0, t) 
dt 

wJTFT{S(r0,w)F(w)} (25) 
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Fig. 5.   (a) Cross section of a tissue sample; (b) reconstructed image; and 
(c) a line profile of the reconstructed image at y = 31.5 mm. 

where F(LJ) is a wide bandpass filter, which is used to further 
eliminate noise at high and low frequencies in order to guarantee 

the condition \k\r0 > 1 for the modified backprojection. A 
simple filter is 

fl,   0.1 MHz </< 1.8 MHz 

10,   otherwise. 

IV. RESULTS AND DISCUSSION 

Finally, we use the above modified backprojection algorithm 
and the experimental method to investigate some tissue samples. 

A. Experimental Data Preprocessing 

The measured piezoelectric data include the useful thermoa- 
coustic signal as well as some noise data as illustrated by the fol- 
lowing example. Fig. 4(a) is a typical measured temporal piezo- 
electric signal, which is from the sample shown in Fig. 5(a). 
One portion of the noise resulting from the microwave pumping 
looks like the curve in Fig. 4(b), which is acquired at the same 
sampling rate and the same delay time with the transducer in 
the same position as the curve in Fig. 4(a). Because the slice is 
very thin, the thermoacoustic signal is not much higher than the 
noise resulting from the microwave pumping. Next, we subtract 
the noise from the raw thermoacoustic signal and use a wide 
bandpass filter to eliminate some of the useless low-frequency 
and high-frequency components. This processed data is shown 
in Fig. 4(c); it is much cleaner than the raw data in Fig. 4(a). The 
filtered thermoacoustic signals detected at different angular po- 
sitions from 0° to 360° are shown in Fig. 4(d). 

B. Image Contrast 

Image contrast is an important index for biological imaging. 
Fig. 5(a) shows a tested sample, which was photographed after 
the experiment. The sample was made according to the fol- 
lowing procedure. First, we cut a thin piece of homogeneous 
pork fat tissue and shaped it arbitrarily to form a base. Its thick- 
ness is 5 mm and its maximum diameter is 4 cm. Then we used 
different screwdrivers to carefully make two pairs of holes that 
were approximately 4 and 6 mm in diameter, respectively. Fi- 
nally, one big and one small hole on the left side were filled 
with pork muscle, while the two holes on the right side were 
filled with pork fat of the same type as that which made up the 
base. 

In the experiment, the transducer rotationally scanned the 
sample from 0° to 360° with a step size of 2.25°. The detec- 
tion radius r$ was 4.3 mm. We used the 160 series of data as 
shown in Fig. 4(d) to calculate the image by our modified back- 
projection method. 

The reconstructed image is shown in Fig. 5(b). The outline 
and size of the fat base as well as the sizes and locations of 
the two muscle pieces are in good agreement with the original 
sample in Fig. 5(a). Fig. 5(c) shows a line profile for the small 
piece of muscle in the image. It indicates that the contrast be- 
tween the fat and the muscle is very high. This high contrast 
is due to the low microwave absorption capacity of fat and the 
high absorption capacity of muscle: at 3 GHz, the penetration 
depth for muscle and fat are 1.2 and 9 cm, respectively. How- 
ever, the two pieces of fat are not visible in the image [Fig. 5(b)], 
which means the minute mechanical discontinuity between the 
boundaries of muscle and fat does not contribute much to the 
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thermoacoustic signal. On the contrary, discontinuity improves 
the strength of the echo sounds in pure ultrasound imaging. 

C. Spatial Resolution 

Spatial resolution is another important index for biological 
imaging. We used samples with a set of small thermoacoustic 
sources to test the resolution. One tested sample is shown in 
Fig. 6(a), which was also photographed after the experiment was 
completed. 

The sample was made according to the following procedure. 
First, we cut a thin piece of homogeneous pork fat tissue and 
made it into an arbitrary shape. Its thickness was 5 mm with a 
maximum diameter of 4 cm. Then we used a small screwdriver 
to carefully make a set of small holes about 2 mm in diameter. In 
the meantime, we prepared a hot solution with 5% gelatin, 0.8% 
salt, and a drop of dark ink (to improve the photographic prop- 
erties of the sample). Next, we used an injector to inject a drop 
of the gelatin solution into each small hole and subsequently 
blew out the air to make good coupling between the gelatin so- 
lution and the fat tissue. After being cooled in room temperature 
for about 15 min, the gelatin solution was solidified. During the 
experiment, the transducer also rotationally scanned the sample 
from 0° to 360° with a step size of 2.25°. The detection radius 
ro was 4.3 mm. 

The reconstructed image produced by our modified backpro- 
jection method is shown in Fig. 6(b); it also agrees with the orig- 
inal sample well. In particular, the relative locations and sizes of 
those small thermoacoustic sources are clearly resolved and per- 
fectly match the original ones. Fig. 6(c) shows a reconstructed 
profile (solid curve) at position x — 27.45 mm of the image 
Fig. 6(b), which includes two gelatin sources with a distance 
of about 3 mm. Each gelatin source has a distinct profile in the 
image. The boundaries between them are clearly imaged. More- 
over, the reconstructed profile is in good agreement with the 
original profile (dashed curve), which was a grayscale profile 
of the image Fig. 6(b). The half-amplitude line cuts across the 
reconstructed profile at points Bi, Ai, A2, and B2, respectively. 
The distances |A]Bi| = 1.72 mm and |A2B2| = 1.67 mm 
in the image are close to the original values of about 1.80 and 
1.60 mm, respectively, which were measured in the original ob- 
jects. Therefore, the width of the profile at the half-amplitude 
closely measures its physical size. 

We here define a resolving criterion to estimate the spatial 
resolution. The quarter-amplitude line cuts across the profiles at 
points Ci and C2, respectively, as shown in Fig. 6(c). If the right 
source moves to the position of the left one, the reconstructed 
profile is equal to the spatial summation of the profiles of the two 
sources, because of the linear superposition property of acoustic 
waves. When point C2 encounters Ci, the new amplitude at C2 

or Ci would reach the half amplitude, and the two sources could 
still be differentiated. If the right one moves more to the left, the 
new amplitude between their overlap regions would elevate to 
more than the half amplitude. When we use a half-amplitude 
line to cut across the profiles, we get only two points on the far 
side of each profile, which means that these two sources can no 
longer be clearly distinguished. Further, when point Ai touches 
A2, these two sources join as a single object in the image. 
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Fig. 6. (a) Cross section of a tissue sample; (b) reconstructed image; and 
(c) comparison between a line profile (solid curve) of the reconstructed image 
(b) at x = 27.45 mm and the corresponding grayscale profile (dashed curve) 
of the original image (a). 
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Fig. 7.   (a) Diagram of the sample structure and the measurement; (b) cross 
section of the tissue sample; and (c) reconstructed image. 

Therefore, the minimum distance that can be differentiated is 
approximately equal to the summation of the horizontal distance 
between point Ai and Ci and the horizontal distance between 

point A2 and C2. We have checked additional pairs of sources 
resembling those in the image of Fig. 6(b), and found that this 
minimum distance is less than 0.5 mm. We can, therefore, claim 
that the spatial resolution in our system reaches less than 0.5 
mm, which agrees with the theoretical spatial resolution limit 
for 1.8-MHz signals whose half wavelength is ~0.5 mm with 
the sound speed of 1.5 mm//is. 

Of course, the detecting transducer has a finite physical size. 
If it is close to the thermoacoustic sources, it cannot be approx- 
imated as a point detector. Its size will blur the images and 
decrease the spatial resolution. Therefore, in experiments, the 
transducer must be placed some distance away from the tissue 
samples. In general, due to the finite size of the transducer, the 
farther away the transducer is from the detection center, the 
better the resolution at the expense of the signal strength. 

Other limiting factors of spatial resolution include the 
duration of the microwave pulse and the impulse response of 
the transducer. In general, using a shorter microwave pulse 
will produce more high-frequency components in the thermoa- 
coustic signals. The disadvantages resulting from employing a 
shorter pulse, however, are insufficient energy delivery and a 
decrease in the signal-to-noise ratio. Selection of the duration 
of the pulse is dependent on the experimental conditions 
and measurement systems. In biological tissues, microwaves 
at 300 MHz~3 GHz with 0.1 ~1 (is pulse width are often 
adopted. Therefore, the high-frequency of the thermoacoustic 
signals reaches several MHz. Such a wide-band transducer for 
measuring acoustic waves at ~MHz is widely available. 

D. Thick Sample 

The advantage of using microwave is its long penetration 
depth in soft tissue. A microwave can reach a tumor buried in- 
side tissue and heat it to generate thermoacoustic waves. One 
tested sample is shown in Fig. 7(a). The experiment was con- 
ducted according to a procedure similar to the one above. Three 
small absorbers were buried inside a big fat base. The big pork 
fat tissue had a maximum diameter of 7 cm. Screwdrivers were 
used to carefully make three holes about 5 mm in diameter with 
a depth of 2.5 cm. Next, an injector was used to inject a drop of 
the same gelatin solution as above into each small hole, and, sub- 
sequently, air was blown out to improve the coupling between 
the gelatin solution and the fat tissue. These gelatin sources were 
about 5 mm in diameter. After being cooled at room tempera- 
ture for about 15 min, the gelatin solutions solidified. The pho- 
tograph of the sample at this stage is shown in Fig. 7(b). Finally, 
the holes were filled with fat, and the gelatin sources were buried 
in the fat tissue. 

During the experiment, a microwave was transmitted out to 
the sample from below. The transducer rotationally scanned the 
sample, including the gelatin sources, from 0C to 360° in a plane 
as Fig. 7(a) shows. The distance between the transducer and the 
rotation center was 7 cm. The reconstructed image produced by 
our modified backprojection method, which agrees well with 
the original sample, is shown in Fig. 7(c). 

The above experiments verified the principle of the modi- 
fied backprojection algorithm, which implies back projection 
and coherent summation over spherical surfaces. In particular, a 
set of circular measurement data would be sufficient to yield a 
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satisfactory cross-sectional image for a sample with only small 
absorption sources in the same horizontal plane and a lower 
absorption background. Of course, for a complicated sample, 
data from only a circular measurement would be insufficient 
for 3-D reconstruction unless cylindrical focusing is employed. 
This limited view problem will be addressed in our future work. 

Finally, we must point out that an inhomogeneous acoustic 
property, such as the speed of sound variation, might result in re- 
construction errors. Fortunately, the speed of sound in most soft 
tissue is relatively constant at ~ 1.5 mm/fxs. The above experi- 
ments demonstrated that the small speed variations between fat 
and muscle or gelatin did not result in significant reconstruction 
artifacts. The reason is that thermoacoustic waves are produced 
internally by microwave absorption and are propagated one-way 
to the detectors. Thus, a small speed variation does not affect the 
travel time of the sound very much in a finite-length path, for ex- 
ample, 10 cm, which is comparable to a typical breast diameter. 
Therefore, in thermoacoustic tomography, satisfactory contrast 
and resolution are obtainable even in tissue with a small degree 
of acoustic inhomogeneity. 

V. CONCLUSION 

Pulsed-microwave-induced thermoacoustic tomography of 
inhomogeneous tissues has been studied. Both an exact inverse 
solution and a modified backprojection algorithm have been 
derived, which are based on the data acquired by wide-band 
point detectors on a spherical surface that encloses the sample 
under study. A set of experiments on tissue samples has been 
investigated under a circular measurement configuration. The 
reconstructed images calculated by the modified backprojec- 
tion method agree well with the original ones. Results indicate 
that this technique using reconstruction theory is a powerful 
imaging method that results in good contrast and good spatial 
resolution (0.5 mm), which can be used for the investigation of 
tissues with inhomogeneous microwave absorptions. 

REFERENCES 

[1] L. E. Larsen and J. H. Jacobi, Medical Applications of Microwave 
Imaging.   Piscataway, NJ: IEEE Press, 1986. 

[2] K. D. Paulsen and P. M. Meaney, "Nonactive antenna compensation 
for fixed-array microwave imaging Part I: Model development," IEEE 
Trans. Med. Imag, vol. 18, pp. 496-507, June 1999. 

[3] P. M. Meaney, K. D. Paulsen, J. T. Chang, M. W. Fanning, and A. Hartov, 
"Nonactive antenna compensation for fixed-array microwave imaging: 
Part II Imaging results," IEEE Trans. Med. Imag., vol. 18, pp. 508-518, 
June 1999. 

[4] F.  W.  Kremkau, Diagnostic  Ultrasound:  Principles  and Instru- 
ments.   Philadelphia, PA: W. B. Saunders, 1993. 

[5] E. Steen and B. Olstad, "Volume rendering of 3D medical ultrasound 
data using direct feature mapping," IEEE Trans. Med. Imag., vol. 13, 
pp. 517-525, June 1994. 

[6] G. Ku and L. V. Wang, "Scanning microwave-induced thermoacoustic 
tomography: Signal, resolution, and contrast," Med. Phys., vol. 28, pp. 
4-10,2001. 

[7] M. H. Xu, G. Ku, and L. V. Wang, "Microwave-induced thermoacoustic 
tomography using multi-sector scanning," Med. Phys., vol. 28, pp. 
1958-1963,2001. 

[8] C. G. A. Hoelen and F. F. M. de Mul, "Image reconstruction for pho- 
toacoustic scanning of tissue structures," Appl. Opt., vol. 39, no. 31, pp. 
5872-5883, Nov. 2000. 

[9] Y. V. Zhulina, "Optimal statistical approach to optoacoustic image re- 
construction," Appl. Opt., vol. 39, no. 32, pp. 5971-5977, Nov. 2000. 

[10] R. A. Kruger, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic com- 
puted tomography-technical considerations," Med. Phys., vol. 26, no. 9, 
pp. 1832-1837, 1999. 

[11]  S. J. Norton and M. Linzer, "Ultrasonic reflectivity imaging in three 
dimensions: Exact inverse scattering solutions for plane, cylindrical, 
and spherical apertures," IEEE Trans. Biomed. Eng., vol. BME-28, pp. 
202-220, 1981. 

[12] G. B. Arfken and H. J. Weber, Mathematical Methods for Physi- 
cists.    San Diego, CA: Academic, 1995. 

[13] A. C. Tam, "Application of photoacoustic sensing techniques," Rev. 
Mod. Phys., vol. 58, pp. 381-431, 1986. 

[14] P. M. Morse and H. Feshbach, Methods of Theoretical Physics.   New 
York: McGraw-Hill, 1953. 

[15] Y. Xu, D. Feng, and L. V. Wang, "Exact frequency-domain reconstruc- 
tion for thermoacoustic tomography: I. Planar geometry," IEEE Trans. 
Med. Imag, vol. 21, pp. 823-828, July 2002. 

[16] Y. Xu, M. H. Xu, and L. V. Wang, "Exact frequency-domain reconstruc- 
tion for thermoacoustic tomography: II. Cylindrical geometry," IEEE 
Trans.. Med. Imag, vol. 21, pp. 829-833, July 2002. 



Appendix 5 

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 7, JULY 2002 823 

Exact Frequency-Domain Reconstruction for 
Thermoacoustic Tomography—I: Planar Geometry 

Yuan Xu, Dazi Feng, and Lihong V. Wang* 

Abstract—We report an exact and fast Fourier-domain re- 
construction algorithm for thermoacoustic tomography in a 
planar configuration assuming thermal confinement and constant 
acoustic speed. The effects of the finite size of the detector and 
the finite length of the excitation pulse are explicitly included in 
the reconstruction algorithm. The algorithm is numerically and 
experimentally verified. We also demonstrate that the blurring 
caused by the finite size of the detector surface is the primary 
limiting factor on the resolution and that it can be compensated 
for by deconvolution. 

Index Terms—Fourier-domain reconstruction, planar, thermo- 
acoustic tomography. 

I. INTRODUCTION 

USING thermoacoustic tomography (TAT) to image bio- 
logical tissues has two primary advantages. The first is 

the high spatial resolution comparable with pure ultrasound 
imaging. The second advantage results from the large contrast 
in microwave absorption that exists between cancerous tissue 
and the normal tissue [l]-[7]. Reviews of TAT and related 
works [8]-[17] can be found in [11] and [18]. 

Various reconstruction algorithms for TAT [8], [9], [16], [18], 
[19] have been reported. Under the approximation that the dis- 
tance between the detector and the absorbing object is much 
larger than the dimension of the absorbing object, a three-di- 
mensional (3-D) Radon transform was applied to reconstruct 
the object in TAT [8]. However, the fact that this approxima- 
tion may not always hold in real-world situations limits the ap- 
plication of this method. Further, the spatial resolutions of the 
imaging system using this reconstruction method are limited by 
blurs [20] caused by the finite size of the transducer surface, 
the finite width of the stimulating pulse, and the finite band- 
width of the transducers and amplifiers. Among these effects, 
the blur from the size of the transducer surface is expected to be 
the largest contributor to the total blur. The analysis of error is 
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limited in numerical simulations, and, hence, no analytical form 
was available prior to this work. A time-domain beam-forming 
technique was applied in one study to image reconstruction for 
the photoacoustic scanning of tissue structures [9]. A weighted 
delay-and-sum algorithm was used to account for the near-field 
effect and to reduce noise. This algorithm is an approximate one, 
and its lateral resolution is limited by the size of the detector sur- 
face. The above reconstructions were implemented in the time 
domain and consequently are time-consuming, especially in 3-D 
tomography. TAT was also obtained in a way similar to that used 
in conventional B-scan ultrasonic imaging, but it had difficulty 
detecting the boundaries of objects that are oblique to the trans- 
ducer axis [16]. Exact reconstructions have been implemented 
for TAT in spherical and cylindrical configurations in the com- 
panion papers [18], [19]. 

Next, we present our studies on an exact and fast reconstruc- 
tion algorithm using a Fourier transform for TAT in a planar 
configuration. The reconstruction of an image by Fourier trans- 
form has been used in X-ray computed tomography [21], ul- 
trasonic reflectivity imaging [22]-[24], and diffraction tomog- 
raphy [25] successfully. The computation complexity is reduced 
greatly due to the efficiency of the Fourier transform. We devel- 
oped image reconstruction by Fourier transform for planar TAT 
and obtained an exact reconstruction algorithm for the first time. 
Furthermore, some limitations from experiments, such as the ef- 
fects of the finite size of the detectors and the finite length of the 
excitation pulse, are included explicitly in the reconstruction al- 
gorithm. The reconstruction algorithm is verified by both nu- 
merically simulated and experimental results. Our simulations 
also demonstrate that the blur due to the finite size of the de- 
tector surface, which is a key limiting factor on the resolution 
of images [9], [20], can be alleviated by deconvolution with re- 
spect to the size of the detector surface. Other effects that may 
cause blurring of images can be treated in a similar way. In our 
initial experiments, an image in good agreement with the real 
objects was reconstructed and the deconvolution improved the 
resolution of the imaging system. 

II. METHODS 

A. Image Reconstruction 

Assume that the detector scans within the plane z — 0 and 
that the object is distributed only in the half space z' > 0. 
In order to obtain a spatial resolution of about 1 mm, the mi- 
crowave pulse should be set to less than ~1 us because the 
speed of sound in soft biological tissue is ~1.5 mm/fis. For 
these parameters, the diffusion term in the heat conduction equa- 
tion is about six orders of magnitude less than the term of the 
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first-derivative of the temperature [26]. Therefore, heat conduc-    and 
tion can be ignored. This is known as the assumption of thermal ^/    y zi\ _    *     ffwtr') 
confinement. In this case, the acoustic wave p(r, t) is related to '   ' (2vr)2 JJ 
microwave absorption H(r, t) by the following wave equation 
r26]: • exp (-i(ux' + vy)) dx dy .      (10) 

d2p(v,t)        2 ßvs dH(r,t) Equation (8) can further be simplified to 
—2 V p{r, t) — —        ^ (1)   
01 _                  ■KßvsI0krj(k)sgi(k)<S>l(u, v, sga(k)^/k2-p2) 

where t = tvs, vs is the acoustic speed, C is the specific heat, P(u, v, k) —      A.2_ i 
and/3 is the coefficient of volume thermal expansion. In(l), the M       P 
acoustic speed is assumed constant, which will be further ad- wuere 

dressed in the discussion section. Equation (1) can be rewritten ^ 
in terms of F(r', t): $x(u> Vj w) = —   f     $(«, v, z') expi-iwz1) dz'.   (12) 

Z7T   J-oo 
.    _       ßvs    fff dH(r', t')     dr1 

'     = 4TTC ///   dt' Ir-H T^e 'ower urmt °*"the above integration is changed from 0 to 
—oo because $(u, V, Z') = 0 when z1 < 0. Equation (11) gives 

where Ü = t — |r — r^. The source term H{rl, I) can further be an exact mapping relation between the spectrum of the collected 
written as the product of a purely spatial and a purely temporal signals and the spectrum of the distribution of microwave en- 
component, i.e., ergy deposition and is the essence of our reconstruction method. 

However, (11) stands only if the acoustic detector is a point de- 
H(r > *) = -7o¥>(r )w) (3)    tector. In practice, the detector is of finite size, whose surface 

T . ,.     _  A _,.     ., iU  .   .,    .    j. .. shape can be described by R(x, y). The signal from the detector 
where Jo is a scaling factor proportional to the incident radiation        /        . J t      T **i. *• 

. "    , .,  , 6 .,     X     . ,       ,. .. pa (x, y, t) can be expressed as an integral of the acoustic wave intensity, <z>(r) descnbes the microwave absorption properties *y ' ■"  ' \ 
,■ /    /T\ J      -i     Ai     L       SJ.   •    j- <.• »(r, t) over the detector surface of the medium at r. ?7(t) descnbes the shape of the irradiating ^v     y 

pulse and is a nonnegative function whose integration over time /7      ,    , , ./.„w^   m} 
equals the pulse energy. Substituting (3) into (2) results in Pd^ *> *> ~ JJ p[x ' y ' '^^     *' y     y) dX ay ' {li) 

S 

p(r i) = MH!  /// y>(r')^-^ I i- (4)    After transforming (13) into the temporal-and spatial-frequency 
4TTC  //J dt'    |r-r'| domain, we have 

We proceed by transforming the time-dependent wave equa- ^           fc) = 47r2-p(        ^       _v) 

tion into the temporal-frequency domain. Denoting the Fourier 
transforms of p and rj by p and ?j, we have where P~d(u, v, k) isthe temporal and spatial Fourier transform 

/oo of pd(x, y, t), and R(u, v) is the spatial Fourier transform of 
p(r, fc) exp(ikt) dk                (5) i?(a;, y). Substituting (14) into (11) results in 

-oo 

yoo                        _ Pd(u,V,k) = 
r)(T) =  /      rj(k) exp(ikt) dk.                   (6) _                    .                      , 

•'-» 47r3ßvsIokrj(k)sgii(k)R(-u, -v)$i (u, v,sga(k)^/k2-p2) 

Substituting (5)and (6) into (4) results in C\Zk2-fß 

= ^Jo^)   /// ^ exp(-^lr-rq) ^ (15) 

47rC7        77./ |r - r'| 
(7)    Mapping the (u, v, k) space into the (u, v, w) space by the 

If the acoustic signals are collected along a line or in a plane,    relation 
for example at z = 0, following the line of Nortan and Linzer _ r-^ j 
in [22], it can be shown that for the case |fc| > p and z1 > 0 ""; ~ s^k> V k  - P (16) 

,N     ßvsI0kV(k)Sga(k) yields an explicit expression for $! 
P(u, v, k) = . — 

ICsfW^p2 $!(„, Wj «,) = 

• /    $(?/, v, 2')exP (-^/sgn(fc)1/A;2 - p2) dz'    (8)                            Cw;Pd (u, v, sgn(w) >/w2 +p2 J 
J0 \ /   .  v _i • 

....   ,     . „      . 47r3/3i's7osgn(w)V^2+P2^(sgn(w)Vw2+P2)-R(-'«>—y) where p  = w + ir, sgnffcl is the Signum function V / 
(17) 

P(u, v, k) - -—r^ JJ P{x, y, 0, k) At ^^ ^ distribution of the microwave energy deposition can 
be reconstructed from #i by 3-D inverse Fourier transform. 

• exp {—i(ux + vy)) dxdy (9)    Equation (17) gives an exact reconstruction algorithm for planar 
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TAT for the first time. Furthermore, the effects of the finite size 
of the detectors and the finite length of the excitation pulse are 
included explicitly. From (17), it can be inferred that the re- 
constructed image spectrum $<*(«, v, w) from the experimental 
data without the consideration of these two effects, as was pre- 
sented by previous researchers [9], [20], is related to the actual 
image spectrum $i(«, v, w) by 

$d(u, v, w) 

= 4ir2rj (sgn(w)y/w2 + p2j R(-u, -v)$i(u, v, w).    (18) 

Both of the effects result in multiplications of a function to the 
actual image spectrum in the frequency domain. They are equiv- 
alent to convolutions in the spatial domain, which blur the re- 
constructed image. However, given the pulse shape and the sur- 
face configuration of the detector surface, the two effects can be 
reduced by deconvolution. 

To summarize, the reconstruction procedure consists of the 
following steps. 

1) The signal from the detector pd(x, y, t) is Fourier trans- 
formed with respect to t to yield pd(x, y, k). Deconvolu- 
tion with respect to the finite pulse length can be imple- 
mented immediately after the Fourier transform. 

2) pd(x, y, k) is Fourier transformed with respect to x and 
y, yielding Pd(u, v, k).        _ 

3) According to (16) and (17), Pd(u, v, k) is mapped to 
$d(fX, v, w). 

4) $d(u, v, w) is deconvoluted with respect to the finite size 
of the detector, giving $I(M, V, W). 

5) $i(u, v, w) is inversely Fourier transformed with respect 
to u, v, w to yield <p(x', y1, z'). 

The order of steps 4) and 5) can be exchanged so that more stable 
deconvolution algorithms can be applied. In numerical calcula- 
tions, ~Fd(u, v, k) is obtained only at discrete points; hence the 
mapping from P~d(u, v, k) to #<*(«, v, w) needs interpolation, 
which can be a major source of distortion. 

B. System Setting 

The experimental setup was reported in [27] and, for con- 
venience, is only briefly described here (Fig. 1). The x axis 
points perpendicularly to the drawing plane; the y axis points 
to the right in the plane; and the z axis points downward along 
the acoustic axis. Microwave pulses are transmitted by a 9-GHz 
microwave generator. The pulse width is 0.5 ßs. The object to 
be imaged is a cylinder of pork fat containing a thin layer of 
connective tissue and six yellow microstructures. The diameter 
of the cylinder fat is 14 mm and the length in the x direction 
30 mm. The cylinder was immersed in mineral oil in a plexi- 
glass tank. The central frequency of the ultrasonic transducer 
(Panametrics) is 2.25 MHz; the bandwidth 1.8 MHz; and the 
diameter of the active element 6 mm. More details about the 
system can be found in [27]. 

III. RESULTS AND DISCUSSION 

Our method was applied to reconstructing images from both 
the simulated and the experimental data in a two-dimensional 
(2-D) case, where the imaged objects were uniform along the x 

x    y 

V 

Ultrasonic 
transducer 

.»*•«*■.••«••••»»•» 

Mterowive 

Fig. 1.    Experimental setup for TAT. 

axis. Because the blur due to the finite size of the detector sur- 
face is a limiting factor on the resolution of images, we demon- 
strated how deconvolution with respect to the detector surface 
can deblur the images. We chose the 2-D case here because both 
the computational and experimental complexity can be reduced 
more in the 2-D case than in the 3-D one. Nevertheless, the ex- 
tension of the conclusions of the 2-D case to the 3-D one is 
straightforward. 

A. Simulation 

The thermoacoustic imaging of two cylinders was numeri- 
cally simulated. Cylinders were chosen because the analytical 
expression for their thermoacoustic signal is available [28]. In 
the simulations, the temporal-frequency range was from near 
0 to 1.5 MHz, which was in accordance with the experimental 
one and with our previous experiments [11]. Two simulations 
were run. The first one was to test our reconstruction algorithm 
under an ideal experimental condition, which is noiseless and 
does not consider any experimental limitations on the detectors. 
In the second case, the effect of the finite size of the detectors on 
the imaging was studied while noise was also added. Deconvo- 
lution with respect to the finite size of the detector surface was 
applied to improve the lateral resolution of the blurred image. 
Since energy deposition is a positive value, only the positive 
components of the reconstructed image were retained, and the 
others were set to zero. 

In step 3) of the reconstruction, which is the mapping from 
Pd(u, v, k) to Qd(u, v, w), linear interpolation was applied. 
By adopting the zero-padding technique [25] for the time-do- 
main data, one can increase the sampling density in the fc-space 
and, consequently, obtain a better performance of the interpo- 
lation in the fc-space. In the reconstruction from the simulation 
data and experimental data, we appended to the end of the data 
the same number of zeros as in the original collected data, so that 
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Fig. 2. The reconstructed image of the cross-section of two cylinders with a 
radius of 2 mm and the centers separated by 5.5 mm under ideal experimental 
conditions. 

the sampling density in the fc-space was doubled. By utilizing 
the Wiener filtering method [29], deconvolution with respect to 
the finite pulse length was implemented immediately after the 
Fourier transform with respect to time in step 1). As the decon- 
volution with respect to the finite size of the detector surface is 
much more unstable than the deconvolution with respect to the 
finite pulse length, we have tried two methods of deconvolution: 
the Wiener filtering method and the piecewise polynomial trun- 
cated singular value decomposition (PP-TSVD) [30] method. 
The first method can be implemented in the spatial-frequency 
domain and is more computationally efficient than the second, 
but the performance of the second method is much better, as it 
can restore sharp boundaries blurred by the convolution while 
avoiding the appearance of artificial oscillations in an unstable 
deconvolution. Therefore, we adopted the PP-TSVD method to 
process the images. Since the models in our simulation and ex- 
periment were uniform along the x axis, one-dimension decon- 
volution was applied. 

Fig. 2 shows the reconstructed image from the simulated data 
under the ideal experimental condition, where the radius of the 
two cylinders was 2 mm; the distance between the centers of 
the cylinders was 5.5 mm; the centers of the cylinders were po- 
sitioned in the plane of z = 10 mm; the scanning range of the 
detector along the y axis was 90 mm with a step size of 0.5 mm; 
and the thermoacoustic signals were sampled for 40 ßs at a sam- 
pling rate of 50 MHz. The reconstructed image is in good agree- 
ment with the real objects, whose outlines are plotted as dotted 
circles in Fig. 2. The dimension of the cylinders is 3.75 mm 
along the z direction and 4.7 mm along the y direction. The 
cylinder is a little deformed laterally, which is due to the finite 
scanning range of the detector. 

Fig. 3 shows the images before and after deconvolution with 
respect to the finite size of the detector surface in a case similar 
to our experimental conditions. The noise was added to the ther- 
moacoustic signals, and the signal-to-noise ratio (SNR) was 50; 
the diameter of the detector was 6 mm. All of the other param- 
eters were the same as those in the first case. The image before 
deconvolution is shown in Fig. 3(a). The dimension of the im- 
ages of the objects is 3.5 mm along the y axis, which agrees well 
with the real one, 4 mm. However, along the z axis, the images 

<   4   6   8  10 W U » 4   &   g  •» 1? 14 18 

»M 9M 836 ft«    ms    «30    ft« 

Fig. 3. The reconstructed images for the same two cylinders as in Fig. 2 from 
noisy data (a) before and (b) after the deconvolution with respect to the detector 
surface. 

of the two cylinders were blurred and consequently merged into 
one, which is predicted by our analysis of the effect of the fi- 
nite size of the detector. The image shows no clear boundaries 
of the objects along the y axis. After deconvolution, the lateral 
boundaries of the objects become very clear and the width of 
the objects in Fig. 3(b) is 4.1 mm, which is quite close to reality. 
Furthermore, the two objects can be distinguished clearly. After 
comparing Fig. 3(a) with (b), it seems that the ghost images be- 
come slightly more obvious, which is a disadvantage of decon- 
volution. Nevertheless, it is obvious that deconvolution with re- 
spect to the finite size of the detector surface can improve the 
lateral resolution greatly. 

In Figs. 2 and 3, there are some ghost images. In principle, 
our reconstruction method is exact under the assumption of 
thermal confinement and constant acoustic speed. However, 
several factors may introduce distortions. First, asjnentioned 
at the end of part Section II-A, the mapping from Pd(u, v, k) 
to $<*(«, v, w) needs interpolation, which is a major source 
of distortion. This distortion can be reduced by increasing 
sampling time or applying a better interpolation algorithm 
in the mapping. Second, in experiments, the detector cannot 
be scanned over the whole plane. Nevertheless, Fig. 2 shows 
that collecting data within a finite area of the collection plane 
can produce images of sufficient definition to determine the 
configuration and position of the objects. 

B. Experimental Result 

Fig. 4 shows the experimental result. The images before 
and after deconvolution with respect to the finite size of the 
detector surface are shown in Fig. 4(a) and (b), respectively. 
Fig. 4(c) is the cross section of the biological tissue, which 
was a cylinder with a radius of about 14 mm and 3 cm long. It 
consisted of two parts of fat separated by a very thin layer of 
connective tissue, which is labeled as (7) in the middle of the 
sample. There were some yellow microstructures among the 
fat, labeled from (lH6), respectively. Fig. 4(a) is the image 
reconstructed from the experimental data before deconvolution. 
The connective tissue between the two parts of fat and the 
yellow microstructures are imaged clearly. The dimension 
of the image is 16.4 mm along the z direction and 19.2 mm 
along the y direction. However, it is obvious that the image 
before deconvolution is blurred along the y axis, which makes 
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Fig. 4. The reconstructed images from the experimental data (a) before and 
(b) after the deconvolution with respect to the detector surface; (c) the cross 
section of a cylinder of fat sample containing six yellow microstructures labeled 
from (1M6) and a layer of connective tissue in the middle labeled as (7). 

the lateral boundaries unclear and the yellow microstructures 
(1) and (2), (3) and (4) merge into one object, respectively. 
The lateral resolution of the image needs to be improved. 
Consequently, deconvolution with respect to the finite size of 
the detector surface was applied to Fig. 4(a), and the result is 
shown in Fig. 4(b). The lateral resolution of the image after 
deconvolution is much improved. The merged objects can be 
distinguished clearly, and the lateral boundaries of the cylinder 
become much clearer. The dimension of the image is 16.4 mm 
along the z direction and 16.7 mm along the y direction. 

C. Discussion 

There are several advantages of our reconstruction method. 
The first one is that it is an exact reconstruction algorithm. 
Unlike other reconstruction methods for TAT that are approxi- 
mate ones, our reconstruction method provides a solid base for 
analyzing and improving the quality of reconstructed images. 
Furthermore, the exact reconstruction method has a broader 
application than the approximate ones. For example, in both 
our simulation and experiment, the closest distance between the 
objects and the detectors was only about 1 cm; this is possible 
because in principle there is no limitation on the detector-ob- 
ject distance in our method. In other words, the detector can 
be placed very close to the object to ensure a better SNR. 
The second advantage of our method is that it can explicitly 
include the effect of many limitations from the experiment, 
such as the finite size of detector surface, the microwave pulse 

length, and the finite frequency response range of the detector. 
Actually, these analyses are also valid for other approximate 
reconstruction methods as long as the other reconstruction 
methods are able to produce images approximating the real 
objects. Consequently, our analysis of the blur caused by the 
various experimental limitations can also be very useful for 
eliminating the limitations in other reconstruction methods. 
Lastly, since the reconstruction in our method is implemented 
in the frequency domain, the efficiency of computation is much 
better than the algorithm implemented in the time domain due 
to the use of the efficient Fourier transformation in our method. 
This is especially important for real-time 3-D imaging. 

From the above images, it can be seen that there is no 
speckle in the reconstructed image. Speckles are an important 
factor limiting the quality of pure ultrasonic imaging. In our 
technology, the detected signals are directly from the primary 
acoustic waves rather than reflective or scattered waves. 
Further, the temporal frequency of the acoustic signals lies in 
a range from 0 to 1.5 MHz, which is only weakly scattered 
in the tissues. The above two factors guarantee that there is 
no obvious speckle in our experimental images. However, 
the issue of image speckle in more realistic medical imaging 
applications of our algorithm is a topic for future consideration. 

The formulas in this paper are for TAT in planar geometry 
only. However, for cylindrical geometry [19], we can predict 
that the lateral resolution of images can also be improved by 
deconvolution with respect to the detector surface, where the 
deconvolution is carried out in a cylindrical surface instead of 
a plane. For spherical geometry [18], similar work can be con- 
ducted as well. 

For many medical imaging applications, the acoustic speed 
may not be constant. For example, the acoustic speed inside the 
female breast may typically exhibit a 10% variation; however, 
our simulation, to be reported elsewhere, showed that the image 
distortion is relatively small. 

IV. CONCLUSION 

We developed a Fourier-domain reconstruction for TAT and 
obtained an exact and fast reconstruction algorithm. The effects 
of the finite size of the detectors and the finite length of the ex- 
citation pulse were included explicitly in the reconstruction al- 
gorithm. The reconstruction algorithm was verified by both nu- 
merical simulations and experimental results. Our simulations 
demonstrated that the blurring caused by the finite size of the 
detector surface, which is a key limiting factor on the resolu- 
tion of images, can be alleviated by deconvolution with respect 
to the detector surface. Other effects that may cause the blur of 
the images can be treated in a similar way. In the initial exper- 
iment, an image in good agreement with the real objects was 
reconstructed and the deconvolution improved the resolution of 
the imaging system. The method can also be extended to other 
configurations of data collection. 
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Exact Frequency-Domain Reconstruction for 
Thermoacoustic Tomography—II: 

Cylindrical Geometry 
Yuan Xu, Minghua Xu, and Lihong V. Wang* 

Abstract—Microwave-induced thermoacoustic tomography 
(TAT) in a cylindrical configuration is developed to image bio- 
logical tissue. Thermoacoustic signals are acquired by scanning a 
flat ultrasonic transducer. Using a new expansion of a spherical 
wave in cylindrical coordinates, we apply the Fourier and Hankel 
transforms to TAT and obtain an exact frequency-domain recon- 
struction method. The effect of discrete spatial sampling on image 
quality is analyzed. An aliasing-proof reconstruction method is 
proposed. Numerical and experimental results are included. 

Index Terms—Cylindrical, frequency-domain reconstruction, 
thermoacoustic tomography. 

I. INTRODUCTION 

THERMOACOUSTIC tomography (TAT) combines the 
strength of traditional microwave imaging and ultrasound 

imaging [1]—[14]. Reviews on TAT and related techniques 
can be found in [11], [12], [14]. Recently, we derived exact 
reconstruction algorithms for TAT in both planar and spherical 
configurations; these are reported in the companion papers [11], 
[12]. We recognize, however, that in some applications such as 
the imaging of the limbs, a cylindrical scanning surface may be 
more appropriate. In this paper, using a new expansion formula 
in cylindrical coordinates, we derive a frequency-domain 
reconstruction algorithm [15]—[19] and report our numerical 
and experimental results in two-dimensional (2-D) cases. 

II. METHODS 

We assume that the detector scans on a cylindrical surface 
with a radius of p, which encircles all microwave absorbing ob- 
jects. In our paper, a coordinate with a prime refers to the po- 
sition in an imaged object, while a coordinate without a prime 
refers to that of a detector. In the case of thermal confinement, 
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the temporal spectrum of acoustic field p(r, k) is related to the 
microwave absorption distribution y(r') by the following equa- 
tion [11]: 

p(r, k) = 
ißvsI0kr](k) 

AitC II!« 
,  exp(-ifc|r-r/|) 

Ir-r'j 
dv' 

(1) 
where the symbols are defined as in [11]. Cylindrical coordi- 
nates are used in the following derivation, where z is shown 
in [12, Fig. 2], and p, <j> are the polar coordinates within the 
x-y plane. Following the derivation of the series expansion of 
l/|r - r'| [20], we obtained the following new identity for a 
series expansion of a spherical wave in a cylindrical coordinate 
system (see the Appendix for the derivation): 

exp(—ik\r — r'|) 
47r|r-r'| 

— — /     dkz exp\—ikz(z'— z)] 
8W-00 

oo 

•   ^2   Mm, up', up) exp[-im((f>' - </>)]      (2) 
ro=—oo 

where p = sga(k)^\k2 - k%\; sgn() is the signum function; 
and A is the function defined as 

A(m, pp', pp) = 
(Jm(pp')Hl 

\-Im{W 

*(pp), if\k\>\kz 

)Km(\p\p),   if\k\<\k2 

where Jm, H%lt Im, and Km are the mth-order Bessel, 
second-kind Hankel, and modified Bessel functions, respec- 
tively. It has been assumed in the above two equations that 
p > p'. Substituting (2) into (1) results in 

p(r, k) = 
ßvsIokri(k) sgn(fc) 

./. 

///*VM 
8TTC 

dkz exp[—ikz{z
l — z)] 

oo 
oo 

Y2   Mm, pp', pp) exp[-im((j>' - <j>)].     (3) 
m=—oo 

The |A;| > \kz\ part of the integration with respect to kz rep- 
resents the contribution from the propagation wave, while the 
1^1 < IM Part represents the evanescent wave. As the evanes- 
cent wave decays rapidly at a distance several wavelengths from 
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the source, it is not suitable for thermoacoustic imaging. For the 
case of \k\ > \kz\, after Fourier transforming both sides of the 
above equation with respect to <j> and z, we have 

- /     u    us - ßvsIokrjjfyH^itip) 
Pi(m, KZ, K) — -T—^ 

• /    dp'p'(pi(m, kz, p')Jm(pp')   (4) 
Jo 

where p~i(m, kz, k) and ipi(m,, kz, p') are the Fourier trans- 
forms of p(r, k) and <p(r'), respectively. Noticing that the right 
side of (4) is actually a Hankel transform, an inverse Hankel 
transform gives 

V?i(m, kz, p)=—-— I    dp 
PVslQ J0 

ppx{m, kz, k)Jm(pp') 
kfj(k)Hl(pp) 

\k\ > \kz 

Applying a variable change of the integral variable from p to k 
to the above equation results in 

|fc| > \kz\. (5) 

At last, <pi(m, kz, p') is inversely Fourier transformed with re- 
spect to m and kz to yield <p((f>', z', p'). Equation (5) gives an 
exact mapping relation between the spectrum of the collected 
signals and the spectrum of the distribution of microwave en- 
ergy deposition and is the essence of our reconstruction method. 

An exact reconstruction method for ultrasonic reflectivity 
imaging with a cylindrical scanning surface was given in [16]. 
However, our results are much simpler and more stable. In their 
equation A24, Jm(pr0), where r0 is the radius of the scanning 
cylindrical surface, appeared in the denominator and can be 
zero for some values of p; consequently, this term can cause 
instability. In our (5), H^(pp) appeared in the denominator, 
which cannot be zero for a finite p. 

To summarize, the reconstruction procedure consists of the 
following steps. 

1) The signal from the detector p{4>, z, t) is Fourier trans- 
formed with respect to t to yield p((j>, z, k). Deconvolu- 
tion with respect to the finite pulse length can be imple- 
mented immediately after the Fourier transform. 

2) p(4>, z, k) is Fourier transformed with respect to z and (f>, 
giving Pi(m, kz, k). 

3) According to (5), p~i(m, kz, k) is mapped to 
<Pi(m, kz, p'). 

4) ipi(m, kz, p') is inversely Fourier transformed with re- 
spect to m, kz to yield <£>(</>', z', p'). 

III. RESULTS AND DISCUSSION 

To test our method, images from both numerically simulated 
and experimental data were reconstructed in a 2-D case. We 
chose the 2-D case rather than the three-dimensional (3-D) case 
to reduce the computational and experimental complexity. For 
the 2-D case, the reconstruction equation can be derived from 
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Fig. 1.   The images (a) before and (b) after the reconstruction from the 
simulated data of two cylinders. 
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Fig. 2.    (a) The cross section of a fat sample containing 5 pieces of muscle 
cylinders, (b) The reconstructed image from the experimental data. 

(4) by replacing all kz with zero. The extension of the conclu- 
sions of the 2-D case to a 3-D one is straightforward. 

A. Numerical Simulation 

The thermoacoustic imaging of two cylinders was numeri- 
cally simulated, where the radius of each cylinder was 2 mm; 
the distance between the centers of the cylinders was 5 mm; and 
the center of one of the cylinders was positioned at the origin of 
the circle of detection. Cylinders were chosen because the an- 
alytical expression for their thermoacoustic signal is available 
[21 ]. In the simulations, the temporal-frequency range was from 
about 0 to 2 MHz, which was close to our experimental situa- 
tion [14]. For the noiseless simulated data, the reconstruction is 
almost perfect. Therefore, we show only the results from noisy 
data. Fig. 1 shows the images before and after the reconstruc- 
tion from the simulated data with introduced additive noise. The 
units for the signals and energy deposition in Figs. 1 and 2 are 
relative ones. Calibration of our system is needed to obtain an 
absolute measurement. The radius of the circle of detection was 
30 mm; the angular scanning range was 27r with 256 steps; and 
the thermoacoustic signals were sampled for 50 ps at a sam- 
pling rate of 4 MHz. The signal-noise-ratio (SNR) of the raw 
data shown in Fig. 1(a) was 1. The reconstructed image shown 
in Fig. 1(b) is in good agreement with the real objects, whose 
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outlines are plotted as dotted circles in Fig. 1(b). The dimen- 
sions of the reconstructed cylinders are 4 mm along both the 
x and the y directions. The SNR of the reconstructed image is 
about 8, which is improved greatly compared with that of the 
raw data. 

B. Experiment Results 

The experimental setup for 2-D TAT in a cylindrical con- 
figuration is the same as that in [12]. The sample is shown in 
Fig. 2(a), which was photographed after the experiment. Mi- 
crowave pulses were delivered to the sample from below. The 
imaging plane was 2 cm above the bottom of the tissue sample. 
Above the plane, there is another layer of fat about 1 cm thick. 
The sample consisted of five muscle cylinders with a diameter 
of about 3 mm and a height of 6 mm. The muscle cylinders were 
surrounded by pork fat. The electrical property of interest to this 
imaging technique is the microwave attenuation coefficient of 
the medium at the experimental microwave frequency, 3 GHz. 
The microwave attenuation coefficients of fat and muscle are 
9 cm-1 and 1 cm-1, respectively. The microwave absorption in 
mineral oil can be neglected, compared with the absorption in 
fat and muscle. During the experiment, the transducer scanned 
around the sample at a radius of 7.1 cm from 0° to 360° with a 
step size of 2.25°. The thermoacoustic signals were sampled for 
60 fis at a sampling rate of 20 MHz. The time between the end 
of a microwave pulse and the acquisition of the thermoacoustic 
signal was between 10 ^s and 20 ps in our system, depending 
on the distance of the transducer to the nearest sample surface. 

Fig. 2(b) shows the reconstructed image from the experi- 
mental data. The reconstructed image is in good agreement 
with the real objects. The boundaries between the fat and the 
surrounding medium and the muscle cylinders are imaged 
clearly. However, it can be seen that the quality of the image 
decreases with the increasing distance of the objects from the 
center of the circle of detection. One possible reason is that the 
finite surface area of the detector, which has a 6-mm diameter in 
this experiment, may cause blurring of the image perpendicular 
to the radial direction, and this blurring is more serious when 
the object is farther from the center. Another possible reason is 
that the microwave field decreases when the radius increases 
in our irradiation configuration. 

Our method can be applied to analyze the effect of the dis- 
crete sampling by the detector along the circle of detection on 
imaging. This can be illustrated by analyzing the signals from a 
point source located at radius p\. According to (4) 

Pi (TO, k) oc Jm(kpi). (6) 

Fig. 3 shows how Jm(kpx) changes with m, where k = 
8.37 mm-1 (the wave number of a 2-MHz acoustic wave) and 
pi — 10 mm. It is clear that Jm(kpi) has considerable value 
until m « kpi, where the Bessel function makes a transition 
from near-field behavior to far-field behavior. Therefore, it 
is safe to claim that, with respect to variable <f>, p(r, k) is 
band-limited by kp\. According to the Nyquist criteria, the 
number of scanning points per cycle should be at least 2kpi to 
avoid aliasing. In other words, for a fixed number of scanning 
points TV, the maximum wave number before aliasing occurs 
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Fig. 3. Jm(fcpi) versus m, where k = 8.37 ram-1 (the wave number of a 
2 MHz acoustic wave) and pi = 10 mm. 

is femax « N/(2pi). It can be seen that the maximum wave 
number is inversely proportional to py. For the same N and 
temporal spectrum of signal, the aliasing may be more serious 
for signals coming from sources at a greater radial distance 
than for those closer to the center. The above analysis also 
points out a way to produce an aliasing-free image from the 
data obtained by discrete detection. That is to apply a filter in 
the temporal-frequency domain to the spectrum of the temporal 
data with a stopband at about iV/(2pmax), where pmax is the 
maximum radius of imaging range of interest. The application 
of the filter will decrease the resolution of the image; however, 
it can guarantee that there will be no aliasing in the image. 

C. Discussion 

Since our method is implemented in the frequency domain 
using the fast Fourier transform (FFT) technique, the computa- 
tional efficiency is much greater than if implemented in the time 
domain. The most time-consuming computation in the numer- 
ical reconstruction lies in (5), which is a Hankel transform. For- 
tunately, a quasi-fast algorithm for it, which is as efficient as a 
one-dimensional FFT, is available [22]. Following the methods 
in [11], our method can explicitly include and further eliminate 
the effect of many limitations from the experiment, such as the 
finite size of the detector surface, the microwave pulse length, 
and the finite response frequency range of the detector. Addi- 
tionally, combining our method and the techniques in [16], a 
new exact reconstruction algorithm for 3-D ultrasonic reflec- 
tivity imaging with a cylindrical aperture can be derived. Finally, 
we would like to point out that the reconstruction methods re- 
ported in this paper and the two companion papers [11], [12] are 
also applicable to photoacoustic or optoacoustic tomography as 
well as other diffraction-based inverse source problem. 

The size of tissue samples that can be imaged by our system 
is mainly limited by the safety standard on microwave power, 
the microwave frequency, the microwave irradiation configu- 
ration, the sensitivity of the ultrasonic transducer, the dynamic 
range of the preamplifier and sampling system, and the afford- 
able imaging time. The effect of microwave frequency on the 
imaging depth was addressed in reference [13]. A microwave 
irradiation configuration that renders a uniform microwave irra- 
diation within the sample will also increase the capacity of the 
system to image larger samples. A large dynamic range of the 
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preamplifier and the sampling system is necessary to accurately 
collect the thermoacoustic signals from both the surface and the 
inside of a sample. A more sensitive ultrasonic transducer and 
a longer imaging time can improve the signal-to-noise ratio of 
acoustic signals and make the weak signals from the inside of 
large samples detectable. 

In our initial computation, the reconstruction of a single 2D 
image required about 2 min in a Dell Precision 330 computer 
(Intel Pentium 4 processor with a clock frequency of 1.5 GHz) 
with Matlab programs if there was no precomputation of Bessel 
and Hankel functions. However, our initial computation was 
aimed at verifying the proposed algorithm rather than demon- 
strating the computation efficiency. The proposed algorithm can 
be implemented with high computational efficiency as stated in 
the discussion section. For high computational efficiency, the 
program should be coded with languages such as C or Fortran, 
Bessel and Hankel functions should be precomputed, and the 
fast Hankel transform algorithm should be adopted. The evalu- 
ation of the computation efficiency of our algorithm is a topic 
for future studies. 

IV. CONCLUSION 

Using a new expansion of a spherical wave in the cylindrical 
coordinate system, we applied the Fourier transform and Hankel 
transform techniques to TAT with a cylindrical detection sur- 
face. The reconstruction algorithm is verified by both numerical 
simulations and experimental results in 2-D cases. The method 
was applied to analyze the effect of discrete sampling by the de- 
tector along the circle of detection on imaging; an aliasing-free 
reconstruction method for discrete sampling along the azimuth 
direction is proposed. 

APPENDIX 

The derivation of (2) will be presented here. The spherical 
wave Gk(r, r') = exp(-ik\r - r'|)/(47r|r - r'|) is a solution 
to the wave equation with a point source 

V2
rGk(r, r') + k2Gk{v, r') = -fi(r - r>).        (Al) 

The solution can be expanded in terms of orthonormal functions 
of z and <j> in a cylindrical coordinate system 

/ 1 \2    °°      f°° 
Gfc(r, r) = ( — )     ^2    /     dkz9m{k, kz, p, p') 

■ exp[im((p - (/>') + ikz(z - z')].    (A2) 

Substituting (A2) into (Al) results in an equation for the radial 
Green's function gm 

\i{>%H*-*-D— KP-P') 

(A3) 
When \k\ < \kz\, following the derivation of the series expan- 
sion of l/|r - r'| [20], one obtains a similar expansion for the 
spherical wave 

We next consider the case of | k \ > \ kz | and k > 0. Noticing that 
when p—>oo,gm behaves asymptotically as exp[—ip,(p — p')] 
(p > p' is implicit in our model), one can follow the derivation 
in [20] and obtain 

9m = 2i Jm^p'^H^p^- 

Similarly, for \k\ > \kz\ and k < 0 

nrq 

9m = y Jm{W)Hm{\p\p). 

(A5) 

(A6) 

gm = Im(\lAp')Km{\lAp)- (A4) 

Using the following identities of Bessel and Hankel functions 
[23]: 

H1
m(fip)=-(-irHl(-w), 

Jm(ßp)=(-l)mJm(-ßp) 

and combining (A2) and (A4)-(A6), we obtain (2). 

REFERENCES 

[1] W. Joines, R. Jirtle, M. Rafal, and D. Schaeffer, "Microwave power ab- 
sorption differences between normal and malignant tissue," Radiation 
Oncol. Biol. Phys., vol. 6, pp. 681-687, 1980. 

[2] S. Chaudhary, R. Mishra, A. Swamp, and J. Thomas, "Dielectric prop- 
erties of normal human breast tissues at radiowave and microwave fre- 
quencies," Indian J. Biochem. Biophys., vol. 21, pp. 76-79, 1984. 

[3] W. Joines, Y. Zhang, C. Li, and R. Jirtle, "The measured electrical prop- 
erties of normal and malignant human tissues from 50-900 MHz," Med. 
Physics., vol. 21, pp. 547-550, 1994. 

[4] L. E. Larsen and J. H. Jacobi, Eds., Medical Applications of Microwave 
Imaging.   Piscataway, NJ: IEEE Press, 1986. 

[5] S. Caorsi, A. Frattoni, G. L. Gragnani, E. Nortino, and M. Pastorino, 
"Numerical algorithm for dielectric-permittivity microwave imaging 
of inhomogeneous biological bodies," Med. Biol. Eng. Comput., vol. 
NS-29, pp. 37-44, 1991. 

[6] M. S. Hawley, A. Broquetas, L. Jofre, J. C. Bolomey, and G. Gaboriaud, 
"Microwave imaging of tissue blood content changes," J. Biomed. Eng., 
vol. 13, pp. 197-202,1991. 

[7] P. M. Meaney, K. D. Paulsen, and J. T. Chang, "Near-field microwave 
imaging of biologically-based materials using a monopole transceiver 
system,"IEEE Trans. Microwave Theory Tech.,vo\. 46, pp. 31-45, Jan. 
1998. 

[8] R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, "Photoacoustic 
ultrasound (PAUS)-reconstruction tomography," Med. Phys., vol. 22, pp. 
1605-1609, 1995. 

[9] C. G. A. Hoelen, F. F. M. Demul, R. Pongers, and A. Dekker, "Three-di- 
mensional photoacoustic imaging of blood vessels in tissue," Opt. Lett., 
vol. 23, pp. 648-650, 1998. 

[10] G. Ku and L.-H. V. Wang, "Scanning thermoacoustic tomography in 
biological tissue," Med. Phys., vol. 27, pp. 1195-1202, 2000. 

[11] Y. Xu, D. Feng, and L.-H. V. Wang, "Exact frequency-domain recon- 
struction for thermoacoustic tomography—II: Planar geometry," IEEE 
Trans. Med. Imag., vol. 21, no. 7, pp. 823-828, July 2002. 

[12] M. Xu and L.-H. V. Wang, 'Time-domain reconstruction for thermoa- 
coustic tomography in a spherical geometry," IEEE Trans. Med. Imag, 
vol. 21, no. 7, pp. 814-822, July 2002. 

[13] G. Ku and L.-H. V. Wang, "Scanning microwave-induced thermoa- 
coustic tomography: Signal, resolution, and contrast," Med. Phys., vol. 
28, pp. 4-10, 2001. 

[14] Y. Xu andL.-H. V. Wang, "Signal processing in scanning thermoacoustic 
tomography in biological tissues," Med. Phys., vol. 28, pp. 1519-1524, 
2001. 

[15] H. Stark, J. W. Woods, I. Paul, and R. Hingorani, "Direct Fourier recon- 
struction in computer tomography," IEEE Trans. Acoust. Speech Signal 
Processing, vol. ASSP-29, pp. 237-245, 1981. 

[16] S. J. Nortan and M. Linzer, "Ultrasonic reflectivity imaging in three 
dimensions: Exact inverse scattering solution for plane, cylindrical 
and spherical aperture," IEEE Trans. Biomed. Eng., vol. BME-28, pp. 
202-220, 1981. 



XU et al.: EXACT FREQUENCY-DOMAIN RECONSTRUCTION FOR THERMOACOUSTIC TOMOGRAPHY: II. CYLINDRICAL GEOMETRY 833 

[17] K. Nagai, "A new synthetic-aperture focusing method for ultrasonic 
b-scan imaging by the Fourier transform," IEEE Trans. Sonics Ultrason., 
vol. SU-32, pp. 531-536, 1985. 

[18] J. Lu, "Experimental study of high frame rate imaging with limited 
diffraction beams," IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 
45, pp. 84-97, Jan. 1998. 

[19] S. X. Pan and A. C. Kak, "A computational study of reconstruction algo- 
rithms for diffraction tomography: Interpolation versus filtered backpro- 
jection," IEEE Trans. Acous. Speech Signal Processing, vol. ASSP-31, 
pp. 1262-1275, 1983. 

[20] J. D. Jackson, Classical Electrodynamics.   New York: Wiley, 1975. 
[21] G. J. Diebold, M. I. Khan, and S. M. Park, "Photoacoustic signatures of 

paniculate matter: Optical production of acoustic monopole radiation," 
Science, vol. 250, pp. 101-104, 1990. 

[22] A. E. Siegman, "Quasi fast Hankel transform," Opt. Lett, vol. 1, pp. 
13-15, 1977. 

[23] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Func- 
tions.   New York: Dover, 1972. 



Appendix 7 

Pulsed-microwave-induced thermoacoustic tomography: 
Filtered backprojection in a circular measurement configuration 
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Our study on pulsed-microwave-induced thermoacoustic tomography in biological tissues is pre- 
sented. A filtered backprojection algorithm based on rigorous theory is used to reconstruct the 
cross-sectional image from a thermoacoustic measurement in a circular configuration that encloses 
the sample under study. Specific details describing the measurement of thermoacoustic waves and 
the implementation of the reconstruction algorithm are discussed. A two-dimensional (2D) phantom 
sample with 2 mm features can be imaged faithfully. Through numerical simulation, the full width 
half-maximum (FWHM) of the point-spread function (PSF) is calculated to estimate the spatial 
resolution. The results demonstrate that the circular measurement configuration combined with the 
filtered backprojection method is a promising technique for detecting small tumors buried in bio- 
logical tissues by utilizing microwave absorption contrast and ultrasound spatial resolution (~mm). 
© 2002 American Association of Physicists in Medicine.   [DOI: 10.1118/1.1493778] 

Key words: microwave, thermoacoustics, tomography, imaging, filtered backprojection 

I. INTRODUCTION 

Pulsed microwave-induced thermoacoustic tomography 
combines the advantages of both ultrasound spatial resolu- 
tion and microwave absorption contrast.1"4 The basic idea of 
this technique is that a very short microwave pulse (<1 /xs) 
heats a sample; the sample then absorbs the microwave en- 
ergy and simultaneously generates temporal thermoacoustic 
waves, which are strongly related to the locally absorbed 
microwave energy. The microwave pulse is so short that the 
heat diffusion's effect on the thermoacoustic wave can be 
ignored. The thermoacoustic signals have a wide frequency 
range up to MHz and carry the information of the microwave 
absorption distribution with millimeter spatial resolution. In 
practice, microwaves at 300 MHz-3 GHz with 0.1-1 fis 
pulse are often adopted, which offer penetration depths of 
several centimeters in biological tissues. For example, the 
penetration depths for fat and muscle tissues at 3 GHz mi- 
crowaves are 9 and 1.2 cm, respectively.3 Most other soft 
tissues have penetration depths in between those for muscle 
and fat tissues. The wide range of values among various 
tissues makes it possible to achieve high image contrast. In 
addition, the long penetration depth allows this technique to 
detect interior tumors. 

In our initial studies, we used focused transducers with 
big apertures to detect thermoacoustic signals with both the 
linear scan2'3 and the circular scan methods.4 The big aper- 
ture gives us a good signal-to-noise ratio (SNR), because the 
SNR is inversely proportional to the square root of the aper- 
ture area. Each scan line is converted into a one-dimensional 
image along the axis of the transducer, and then cross- 
sectional images can be obtained by straightforward calcula- 
tions. The axial resolution is obtained by measuring the tem- 
poral profiles of the thermoacoustic signals. However, the 
lateral resolution is mainly determined by the focal diameter 

of the transducer.2'5 The image view is also limited by the 
focal length of the transducer. 

An alternative method is to use unfocused transducers 
with small apertures to record the thermoacoustic signals and 
then reconstruct the microwave absorption distribution from 
the measured data. The different measurement configuration 
may, however, result in a different reconstruction algorithm. 
Under certain practical conditions, on a rigorous base, we 
theoretically reported a modified backprojection method for 
the planar, cylindrical, and spherical recording con- 
figurations.6'7 These were computed through temporal spatial 
backprojection and coherent summation over spherical sur- 
faces with spatial weighting factors. This method is some- 
thing like synthetic aperture. Therefore, the SNR can be 
greatly improved through coherent summation, although the 
SNR of each detected temporal signal may be reduced due to 
the small aperture of the unfocused transducer as compared 
to focused transducers with big apertures. 

In this paper, we present our study on pulsed-microwave- 
induced thermoacoustic tomography in biological tissues un- 
der a circular measurement configuration. A wide beam (—22 
cm2) of short-pulse (0.5 /xs) microwave energy is used to 
illuminate a sample from the bottom. The sample absorbs the 
microwave energy and generates temporal thermoacoustic 
waves simultaneously. An unfocused ultrasonic transducer 
with a small aperture (6 mm) is used to record the thermoa- 
coustic signals. A filtered backprojection (FBP) method 
based on rigorous theory is used to reconstruct the cross- 
sectional image from the measured data. Specific details de- 
scribing the measurement of thermoacoustic waves and the 
implementation of the reconstruction algorithm are dis- 
cussed. A phantom sample is investigated. The reconstructed 
image agrees with the original sample very well. Through 
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FIG. 1. Scheme of thermoacoustic circular measurement. Microwave pulses 
are transmitted to the sample from the bottom. The tumor inside absorbs the 
energy and generates thermoacoustic waves. An ultrasonic transducer at 
position r0 records the thermoacoustic signals. 

numerical calculation of the point-spread function, the spa- 
tial resolution is estimated to reach ~mm. 

II. METHOD OF MEASUREMENT 

There are three typical measurement geometries: linear or 
planar configuration, circular or cylindrical configuration, 
and spherical configuration. The choice of measurement ge- 
ometry depends on the practical need. For the purposes of 
investigating external organs, the second two choices are 
preferred. In practice, at least two restraints should be con- 
sidered. One is that the space for delivering microwaves to 
the sample is physically limited. Ideally, the sample should 
be homogeneously illuminated as much as possible. Other- 
wise, the thermoacoustic signal will reflect not only the ab- 
sorption differentiation, but also inhomogeneous illumina- 
tion, which will result in reconstruction artifacts. The other 
restraint is that it is physically impossible to collect measure- 
ments over a 4TT solid angular range. The developed recon- 
struction algorithm requires that the detectors receive outgo- 
ing thermoacoustic waves from all possible angular 
directions.6'7 But, in reality, a limited angular range has to be 
tolerated, and the incomplete data also results in some recon- 
struction artifacts. 

In this study, we chose a circular measurement configura- 
tion, as shown in Fig. 1. Tissue, such as breast tissue, is hard 
to compress but easy to deform. A slight force can make the 
external tissue nearly cylindrical in shape. Then, the micro- 
wave can be delivered to the tissue from its larger bottom 
and the detector can measure the outgoing thermoacoustic 
waves in a circular geometry around the tissue. The wave- 
length of microwaves below 3 GHz is relatively long, e.g., at 
3 GHz, 10 cm in air, and 3 cm in soft tissue, compared to the 
typical size of tissue investigated in several centimeters di- 
ameter. That helps to illuminate the tissue homogeneously. 
However, because of attenuation, microwaves along the z 
axis decay exponentially and the generated thermoacoustic 
signal along the z axis decays exponentially, too, even in a 
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FIG. 2. Experimental setup. 

homogenous sample. But the circular detection plane, i.e., 
the horizontal xy plane, is parallel with the incident plane of 
microwave pulses. Besides, due to the bounded water and 
salt in cancer cells,8'9 the tumor will absorb more microwave 
energy and generate more intense thermoacoustic waves than 
the surrounding tissue. Therefore, the thermoacoustic signals 
from the circular plane have a significantly reduced dynamic 
range compared with those in any other planes. This im- 
proves the accuracy of both data acquisition and data recon- 
struction tremendously. As shown below, reasonable recon- 
struction images are achieved in the experiment. 

Figure 2 shows the experimental setup we used for the 
circular measurement configuration. A Plexiglas container is 
filled with mineral oil. An unfocused transducer is immersed 
inside it and fixed on a rotation device. A step motor drives 
the rotation device and then moves the transducer scan 
around the sample on a horizontal x-y plane, where the 
transducer horizontally points to the rotation center. A 
sample is immersed inside the container and placed on a 
holder: it is made of a thin plastic material, which is trans- 
parent to microwaves. The transducer (V323, Panametrics) 
has a central frequency of 2.25 MHz and a diameter of 6 
mm. 

The microwave pulses transmitted from a 3 GHz micro- 
wave generator have a pulse energy of 10 mJ and a pulse 
width of 0.5 /is. A function generator (Protek, B-180) is used 
to trigger the microwave generator, control its pulse repeti- 
tion frequency, and synchronize the oscilloscope sampling. 
In our experiments, the pulse repetition frequency is 50 Hz 
and the oscilloscope sampling frequency is 20 MHz. Micro- 
wave energy is delivered to the sample by a rectangular 
waveguide with a cross section of 72 mmX34 mm. A per- 
sonal computer is used to control the steps. The signal from 
the transducer is first amplified through a pulse amplifier, 
then recorded and averaged 500 times by an oscilloscope 
(TDS640A, Tektronix), and finally transferred to a personal 
computer for imaging. 

This system is within the IEEE standard for safety levels 
with respect to human exposure to radio frequency electro- 
magnetic fields (see the Appendix). The waveguide is filled 
with air and has a mode of TE10. The wavelength of the 
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emitted microwave is 10 cm in air. The microwave irradiates 
from the waveguide and then propagates through a thin layer 
of air into the container and the tissue sample. Due to the 
relatively long wavelength of microwave in tissue (~3 cm at 
3 GHz), the diffraction causes only smooth variations on a 
scale comparable to 3 cm. As discussed later, in signal pro- 
cessing, we removed the low-frequency component below 50 
KHz, which corresponds to an acoustic wavelength of ~3 
cm. Therefore, the effect of mode structure of microwave 
irradiation on thermoacoustic imaging is minor. 

III. METHOD OF RECONSTRUCTION 

We assume a tissue with inhomogeneous microwave ab- 
sorption but a relatively homogeneous acoustic property. 
When the microwave pulse duration is <1 /JS, the heat dif- 
fusion's effect on the thermoacoustic wave in the tissue can 
be ignored. The speed of sound in most soft tissue is rela- 
tively constant at ~1.5 mm/fis. Therefore, the pressure 
p(r,t) produced by the heat source H(r,t) obeys the follow- 
ing equation: .10 

2V2p(r,t)--^2P(r,t) = - T(r) 
3H{r,t) 

dt     ' (1) 

where the Grüneisen parameter T(r) = ßc2/Cp, c is the 
speed of sound; ß is the isobaric volume expansion coeffi- 
cient; Cp is the heat capacity; and H(r,t) is the heating func- 
tion defined as the thermal energy per unit time and unit 
volume deposited by the energy source. Basically, the heat- 
ing function can be written as the product of a spatial absorp- 
tion function and a temporal illumination function: 

H(r,t)=A(r)I(t). (2) 

Suppose a delta illuminating function S(t), the detected 
acoustic pressure p(r0,t) on the circular surface r=r0 

= (p0,(p0,z0), and time t can be written as6 

PM=l-^j\\^D(r) S(ct- -r|) 

4-n-rn-r 
(3) 

where D(r)=A(r)r(r). The inverse problem is to recon- 
struct the spatial distribution D (r) from a set of data p(r0,t) 
measured at a different position r0. 

Due to the finite bandwidths of the transducer, the pre- 
amplifier and the microwave pulse, only a portion of the 
information about the absorption structure can be restored. 
The high-frequency component of the thermoacoustic signal 
primarily reflects the small size structure while the low- 
frequency component primarily reflects the large size struc- 
ture. If challenged to detect small size tumors, we can safely 
remove the low-frequency component. Besides, the wave- 
lengths of the high-frequency thermoacoustic waves are 
much smaller than the detecting distance between the ther- 
moacoustic source and the transducer. Under the above con- 
ditions, i.e., Pok>l or &|r-r0|>l, where k is the wave 
number, we have shown theoretically that the distribution 
D(r) can be calculated by the following 2D surface integral 
in the cylindrical configuration:7 

D(p,cp,z) = -^^2J J fiWo[n-n0]y 
1 dp(r0,t) 

dt Hr-r0|/c 

(4) 

where 

n*=i 
P-Pol p2 + p2

0-2pp0cos{(p0-(p) 

|r-r0| =4 
4 

|r-r0|- 

= \/l- |r—r0|
2 (5) 

dS0 = p0d<p0 dz0, p and p0 are the projections of r and r0 on 
the z plane, respectively, and n and n0 are unit vectors point- 
ing along the line joining p and p0 and along the line joining 
r and r0, respectively. This is a modified backprojection for- 
mula of quantity -(l/t)[dp(r0,t)/dt]. The weighting factor 
[n-n0] is less than 1, except if z = z0, [n-n0]= 1. That indi- 
cates that the cross-sectional image of any z0 plane is mainly 
determined by the data measured on the circle of the same z0 

plane. In other words, if some small absorption sources are 
located on a z0 plane, a set of circular measurement data on 
the same plane would be sufficient to yield a good cross- 
sectional image. 

The quantity dp(r0,t)/dt can be calculated through the 
Fourier transform, 

dp(r0,t) 

dt 
= FFT-I{-^/>(ro,w)0'n(«)}> (6) 

where FFT~' denotes the fast inverse Fourier transform; w is 
angular frequency and equal to 2irf; W&(ai) is a window 
function; and the Fourier transform defines 

'(o>) -r J -00 
•(t)exp(i<Dt)dt. (7) 

We want to point out that the factor a> in Eq. (6) actually 
represents a pure ramp filter, which will significantly depress 
the low-frequency signal. That is helpful to guarantee the 
validity of the reconstruction, Eq. (4). The ramp filter can 
also amplify the high-frequency noise in such a way that the 
reconstructed image is not acceptable from the physical point 
of view. In order to avoid this effect, it is necessary to intro- 
duce a relative low-pass filter fTfj(w) characterized by a 
cutoff angular frequency £1 = 2 irfa. A Hanning window is 
our choice in this case: 

0.5+ 0.5cosL-^- ,    if \w\<£l, 
Wn(<o)=\ \    "/ (8) 

0,    otherwise. 

Thus, the reconstruction algorithm can also be termed a fil- 
tered backprojection (FBP) with the modified ramp filter 
(oWciia)). Unlike the FBP algorithm used in x-ray 
tomography,11 which uses surface integration over intersect- 
ing planes, the method in our problem is calculated through 
temporal backprojection and coherent summation over 
spherical surfaces with a certain spatial weighting factor. 
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IV. EXPERIMENT 

The experimental conditions necessitate special care. The 
reconstruction theory requires point detectors, and the real 
transducer must never be a point. But, we can ignore its size 
if we put it at a distance from the sample that is greater than 
the size of the transducer aperture. In addition, we must 
shield both the transducer and the electrical transmission 
cables from microwave illumination. Otherwise, the micro- 
wave pumping will cause harmful electrical signals via elec- 
tromagnetic induction. If well shielded, the induced signal 
decays very rapidly. A time gate can cut out the induced 
signal before the arrival of the thermoacoustic signal. Sup- 
pose p(r0,t) is the thermoacoustic signal with delta-pulse 
microwave pumping, then the measured thermoacoustic sig- 
nal can be written as a convolution with the measurement 
system response H(t): 

S(r0,t)=p(r0,t)*H(t). (9) 

Considering the temporal response M(t) of the amplifier, the 
impulse response R(t) of the transducer and the temporal 
profile /(/) of the microwave pulse, H{t) can also be written 
as a convolution, 

H(t) = M(t)*I(t)*R(t). (10) 

In the frequency domain, Eq. (9) can be written as 

S(r0,a))^p(r0,co)H(a>). (11) 

Basically, we cannot recover all of the available information 
because of the limited bandwidth of the detection system. 
The information we can acquire depends on the system re- 
sponse H((o). In practice, M(&>) is very wide and ~\;I(a>) 
determines the bandwidth of the generated thermoacoustic 
signal, which is approximately inversely proportional to the 
width of its temporal profile; R(u>) is a wide-band transducer 
with a central frequency o)c. If H{u>) is known, an appro- 
priate deconvolution algorithm can be used to figure out 
P(r0,<»)- 

In our experiments, the illumination I(t) is approximately 
a rectangular function with duration T=0.5 fis, and its tem- 
poral profile is shown as the short dashed line in Fig. 3(a), 
which determines the frequency of the generated thermoa- 
coustic signal below 2 MHz. The transducer that we used is 
of the videoscan type with a central frequency of fc 

= 2.25 MHz, and its temporal profile is shown as the solid 
line in Fig. 3(a). In the frequency range below 2 MHz, the 
response of the transducer approximates a ramp filter. As 
shown in Fig. 3(b), the calculated H(f) (solid line) was com- 
pared with a pure ramp filter / (short dashed line). In this 
special case for our measurement system, the filtered 
dp(r0,t)l^t can be approximately calculated by an inverse 
Fourier transformation as 

dp(r0,t) 

dt 
^T-l{S{r0^)Wn{co)}. (12) 

Next, we imaged a phantom sample with a complex ab- 
sorption structure using the following procedure. First, we 
used screwdrivers to carve a structure: the word "OIL" (ab- 

0.0      0.5       1.0       1.5       2.0       2.5       3.0 

Time t (us) 

(a) 
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3 
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< 
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0.5 

0.0 - ' I" T   I—i—j—i—i—r-i—]—i—i—r—i—i"""i" ill   J   i1 

0.0 0.5 1.0 1.5 2.0 

Frequency f (MHz) 

(b) 

FIG. 3. (a) The impulse response of the transducer R(t) and the temporal 
profile of the microwave pulse /(f); (b) the system response H(f) and the 
pure ramp filter/ 

breviation for Optical Imaging Lab) in a large fat base. The 
diameter of the dent was about 2 mm. In the meantime, we 
prepared a hot solution with 5% gelatin, 1% salt, and a drop 
of dark ink to improve the photographic properties. Then we 
used an injector to inject several drops of the hot solution 
into the dents and subsequently blew out the air to assure 
good coupling between the gelatin solution and the fat tissue. 
The gelatin word was cooled at room temperature until so- 
lidified. The photograph of the sample at this stage is shown 
in Fig. 4(a). Finally, we added a piece of fat both on the top 
and on the bottom of the sample so that the gelatin word was 
buried inside the fat tissue. The diagram of the structure in 
side view is shown in Fig. 4(b). 

The transducer rotationally scanned the sample from 0°- 
360° with step size 2.25° in the plane, including the word 
"OIL." The distance between the transducer and the rotation 
center was 8 cm. The sampling frequency of the oscilloscope 
was 20 MHz. We chose the cutoff frequency fa = 4 MHz in 
the filter WQ . The filtered temporal thermoacoustic signals 
are shown in Fig. 4(c). Because of some time delay in the 
oscilloscope, the rotation origin is at time t = 36.8 /AS. Unlike 
X-ray tomography," these data have no symmetric property 
in a 27T period. The reconstructed image produced by our 
filtered backprojection method, which agrees with the origi- 
nal sample very well, is shown in Fig. 4(d). However, when 
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FIG. 4. (a) Cross-sectional photograph of the sample; (b) the diagram of the 
measurement in side view; (c) the filtered thermoacoustic temporal signals 
detected at different angular positions from 0°-360°; (d) the reconstructed 
image with filtering; (e) the reconstructed image without filtering. 

the filter Wa was not used to depress the high-frequency 
noise, the reconstructed image displayed certain randomly 
distributed spots, as shown in Fig. 4(e), which degrade the 
image quality a lot. 

In signal processing, we removed only the low-frequency 
component below 50 KHz. As shown in Fig. 4(d), the bound- 
ary and location of the large fat base with a 5 cm diameter 
was also faithfully imaged. Therefore, we conclude that the 
removal of low frequencies in signal processing will not 
have much effect on the detection of relatively large struc- 
tures. The location and boundary of the microwave absorp- 
tion structures are primarily determined by the relatively 
high-frequency component of the thermoacoustic signals. 

V. NUMERICAL SIMULATION 

The full width half-maximum (FWHM) of the point- 
spread-function (PSF) profile can be used to represent the 
spatial resolution.12 Through numerical simulation, we can 
calculate the PSF profiles and then estimate the spatial reso- 
lution. 

The limit band of the detection system is a primary factor 
in limiting the spatial resolution. Consider a point source at 
axis x-xp, which can be written in the circular polar coor- 
dinates as 

D(rp) = 
S(p-xp)S(<p)S(z) 

(13) 

Substituting it into Eq. (3), and taking the Fourier transform, 
it is easy to obtain the generated thermoacoustic wave in the 
frequency domain, 

p(r0,a>) = 
-io) exp(ikd) 

4-irc 
(14) 

where d is the distance between the point source and the 
detector, 

d= ^ pl+x2
p~2 poXp cos (po + zl. (15) 

For simplicity, we only consider a circular measurement in 
the plane z0 = 0. We assume the sampling frequency is 20 
MHz and use the Harming window to simulate the limit band 
of the detection system. Figure 5(a) shows three examples of 
ramp filters modified by Harming windows with cutoff fre- 
quencies at 4, 2, and 1 MHz, respectively. We use Eq. (6) to 
calculate derivatives of the temporal thermoacoustic signals. 
Finally, the FBP, Eq. (4), is employed to reconstruct images 
from the simulated data. 

The numerical calculations demonstrate that the PSF is 
radially symmetric only when the point source is located at 
the origin. Such examples of PSF radial profiles with differ- 
ent cutoff frequencies are shown in Fig. 5(b). When a point 
source is off center, the PSF is not radially symmetric. Figure 
5(c) shows some examples of PSF radial profiles when the 
point source is at xp = 30 mm. The farther the point is off the 
origin, the more distortion the PSF has. But the distortion is 
not significant and the PSF does not expand in either the 
lateral or axial direction by very much. Therefore, the PSF 
and FWHM can be regarded as nearly space invariant. Of 
course, if the detector system has a lower cutoff frequency, 
the width of the PSF profile has more extension and the 
spatial resolution becomes lower. Only a wide band signal at 
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FIG. 5. (a) The pure ramp filter/(dashed line) and the modified filters by Hanning windows with different cutoff frequencies: 4 MHz (solid line), 2 MHz (short 
dash dotted line) and 1 MHz (short dashed line); Examples of PSF radial profiles with Hanning windows at cutoff frequencies: 4 MHz (solid line), 2 MHz 
(short dash dotted line) and 1 MHz (short dashed line), when the point source at (b) the origin and (c) the axis x~ 30 mm; (d) examples of PSF profiles in 
lateral view with different detector aperture size 8= 1 mm (solid line), 3 mm (short dash dotted line), and 6 mm (short dashed line), respectively; (e) an 
example of a comparison with Ra, Rb, and R, where 8= 1 mm. 

a sufficiently high frequency can restore good spatial resolu- 
tion and accurate position orientation. Actually, the distortion 
of the PSF results from the approximation of the FBP algo- 
rithm. 

For the PSF profiles in Fig. 5(b), the FWHM were mea- 
sured to be 0.4, 0.9, and 1.5 mm for the cutoff frequencies 4, 
2, and 1 MHz, respectively. These values are equivalent to 
the corresponding half-wavelengths of the central or domi- 
native frequencies of the modified ramp filters: 1.7, 0.8, and 
0.4 MHz, respectively. Therefore, the spatial resolution re- 

sulting from the bandwidth of the detection system can be 
estimated by 

Rb~~Z~> (16) 

where kc is the wavelength of the central or dominative high 
frequency of the detection system. 

In addition to the limitations resulting from the bandwidth 
of the detection system, the size of the detector aperture is 
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another factor, which limits spatial resolution. We also chose 
to investigate its effect through numerical simulation. The 
received signal in the detector can be simulated by a surface 
integral divided by its aperture. Then the PSF can be calcu- 
lated through the FBP, Eq. (4). We assume that the detector 
has a flat surface with diameter S. 

The simulation demonstrates that the PSF gradually ex- 
tends along the lateral side but changes very little along the 
axial direction. Figure 5(d) shows examples of lateral pro- 
files for 8=1, 3, and 6 mm, respectively, where the point 
source at xp=30mm andfn = 4 MHz. It is expected that a 
big detector aperture will greatly blur the lateral resolution. 
For convenience, this kind of spatial resolution can be 
termed Ra, which can be estimated by 

r 
— 8, 
ro 

(17) 

where r0 is the radius of the measurement geometry and r is 
the distance of the point source and the origin. Figure 5(e) 
shows an example of a comparison with Ra, Rb, and the 
lateral resolution R, where 8=1 mm; r0=80mm and fn 

= 4 MHz. Near the origin, Ra<Rb, the lateral resolution R 
is still dominated by Rb. Beyond that where Ra>Rb, the 
lateral resolution R is greatly degraded by the aperture size 8 
and finally equals Ra. The result also indicates that either a 
large detector radius r0 or a small detector aperture 8 can 
improve the lateral resolution in the central region of the 
detection system. But Rb, i.e., the band limit of the detection 
system, determines the highest resolution we can obtain. 

Let us review the experiment in the previous section. The 
detector aperture has a 6 mm diameter, and the image region 
is 30 mm in diameter. Therefore, the worst spatial resolution 
at r=30mm still has ~2 mm. The dominative high fre- 
quency of the detection system is about 1.6 MHz, as shown 
in Fig. 3(b). Thus, the highest resolution is about 0.5 mm. 
That explains why the word "OIL" in 2 mm diameter can be 
clearly imaged. 

Next, we conduct some numerical experiments. We con- 
sider a set of uniform spherical absorbers surrounded by a 
nonabsorbing background medium. For convenience, we use 
the centers of the absorbers to denote their positions. We also 
assume that the pulse duration is very short and can be re- 
garded as a delta function, and, consequently, that the ther- 
moacoustic signal received by the transducer can be calcu- 
lated by Eq. (3). We employ the circular measurement 
configuration, as shown in Fig. 1(a). Suppose the circular 
ultrasonic array consists of 160 elements. The detection ra- 
dius is 80 mm. There are six spherical absorbers in the z 
= 0 plane: a pair of tiny absorbers in diameter 0.75 mm at 
the positive x axis, a pair of small absorbers in diameter 1.5 
mm at the negative y axis, a moderate absorber in diameter 3 
mm at the negative x axis, and a big absorber in diameter 6 
mm at the positive y axis. Equation (6) is used to compute 
the filtered thermoacoustic signals with Hanning windows. 
Figure 6 shows the reconstructed images with different cut- 
off frequencies: (a) 4 MHz, (b) 2 MHz, (c) 1 MHz, and (d) 
0.5 MHz, respectively. As expected, all of the absorbers are 
clearly imaged, as shown in Fig. 6(a), when the frequency 
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band is sufficiently wide. However, in the absence of a high- 
frequency signal, the small size structure is lost. For ex- 
ample, if the cutoff frequency is 1 MHz, the tiny absorbers 
disappear. For the even lower cutoff frequency of 0.5 MHz, 
not only do the small absorbers disappear, but also the origi- 
nally sharp borders of the big absorbers are greatly degraded. 

The above numerical simulations gives us clear directions 
for designing a good image system with ~mm spatial reso- 
lution. The duration of the microwave pulse should be less 
than 1 /ts, which allows a thermoacoustic signal up to 
~MHz frequency to be generated. The measurement detec- 
tors and the preamplifier should have sufficiently wide 
bands, and the central frequency of the detection system 
should reach 1-2 MHz. The transducer with a small aper- 
ture, such as 1 mm in diameter, is preferred. The small ap- 
erture will have less effect on the lateral resolution, and it 
will reduce the SNR as well. Alternatively, a big detection 
radius 10-15 cm can be adopted with the sacrifice of signal 
amplitude because of the acoustic wave propagation attenu- 
ation. A wide microwave frequency range from 300 MHz to 
3 GHz can be used as the irradiation source. A lower- 
frequency microwave might be better to image relatively 
large size samples because it can penetrate deeper. 

Finally, we must point out that incomplete measurement 
data will result in reconstruction artifacts and will degrade 
the spatial resolution. This topic will be addressed more 
completely in future work. 

VI. CONCLUSION 
We have presented our study on pulsed-microwave- 

induced thermoacoustic tomography in biological tissues by 
a circular measurement configuration. A filtered backprojec- 
tion algorithm is used to reconstruct the cross-sectional im- 
ages. The reconstructed image of a phantom sample agrees 
with the original values very well. Through numerical simu- 
lation, the point-spread function is calculated to estimate the 
spatial resolution. The results demonstrate that the circular 
measurement configuration combined with the filtered back- 
projection method is a promising technique for using micro- 
wave absorption contrast and ultrasound spatial resolution 
(~mm) to detect small rumors buried in biological tissues. 
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APPENDIX 

According to the IEEE standard for safety levels with 
respect to human exposure to radio frequency electromag- 
netic fields 3 KHz to 300 GHz (IEEE Std C95.1, 1999 edi- 
tion), the peak power of maximum permissible exposure 
(Peak MPE) for a controlled environment in the frequency 
range/(300-3000 MHz) can be computed by 

Peak MPE= 
0.24 

•X 
/ 

N     Pulse width 
(mW/cm2), 

where N is the pulse number per second (N>5) and the 
pulse width (<100 ms) is in seconds. In other words, the 
permissible pulse energy with illumination area S (cm2) can 
be estimated by 

Pulse Energy = Peak MPE X Pulse widthXS 

0.245/ 

N 
(mJ). 

In our system, N=50, pulse width=0.5 ms, and the area 
of the waveguide 5=7.2X3.4cm2«=22cm2. Therefore, the 
permissible pulse energy=0.24X22X3000/50«300 mJ. But 
the pulse energy that we used is only 10 mJ, which is much 
less than the above permissible value. 

Actually, the pulse width is so short that only tiny energy 
is delivered to the sample. The microwave is not focused and 
the illumination area is so big that the energy density in the 
tissue is very low. Suppose the penetration depth of micro- 
wave is 1 cm, the energy density Ea due to a pulse micro- 
wave excitation can be estimated by 

Ea=Pulse energy/(Illumination area 5'X 1  cm) 

= 10 mJ/22 cm3 ~ 0.45 mJ/cm3. 

Then, we can estimate the pressure and temperature rise ex- 
cited by a pulse microwave in tissue. The muscle contains 
about 75% water. We take it as an example. In muscle, the 
volume expansion coefficient is /3=*3.8X 10~4K-1, the heat 
capacity is Cp^S.l mJ/(gmK), and the mass density is p***\ 
g/cm3. Therefore, the Grüneisen parameter=/ßc2/C/,^0.23, 
and the generated pressure rise, 

p = 0.23X0.45 mJ/cm3 = 0.1 mJ/cm3=l  mbar, 

and the temperature rise, 

8T=EJ(Cpp) = 0A5/3.7~0A mK. 

As discussed in the paper, the penetration depth in tissue for 
a microwave below 3 GHz is several centimeters. The Grün- 
eisen parameter in other soft tissue should be close to the 
value 0.23 in muscle. Therefore, we can conclude that a mi- 
crowave pulse only causes pressure rise with several milli- 
bars and temperature rise with millidegrees. Such tiny values 
are far beyond causing tissue damage. 
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A modified back-projection approach deduced from an exact reconstruction solution was applied to 
our photoacoustic tomography of the optical absorption in biological tissues. Pulses from a Ti:sap- 
phire laser (4.7 ns FWHM at 789.2 nm) were employed to generate a distribution of photoacoustic 
sources in a sample. The sources were detected by a wide-band nonfocused ultrasonic transducer at 
different positions around the imaging cross section perpendicular to the axis of the laser irradia- 
tion. Reconstructed images of phantoms made from chicken breast tissue agreed well with the 
structures of the samples. The resolution in the imaging cross section was experimentally demon- 
strated to be better than 60 /an when a 10 MHz transducer (140% bandwidth at -60 dB) was 
employed, which was nearly diffraction limited by the detectable photoacoustic waves of the 
highest frequency. © 2002 American Association of Physicists in Medicine. 
[DOI: 10.1118/1.1521720] 

Key words: photoacoustic tomography, optoacoustic tomography, laser, reconstruction, imaging 

I. INTRODUCTION 

Recently, there has been considerable interest in photoacous- 
tic tomography, a nonionizing imaging modality based upon 
differential absorption of electromagnetic waves for different 
tissue types. It is well known that some tissues, such as ma- 
lignant tumors, melanin-pigmented lesions, and blood ves- 
sels have obviously higher absorption rates compared with 
surrounding tissues. For example, the absorption contrast be- 
tween breast tumors and normal breast tissues can be as high 
as 300% for 1064 nm light;1 the absorption contrast between 
the blood and the surrounding medium is around 1000% for 
850 nm light.2 The thermal expansion of an absorption struc- 
ture in tissue creates acoustic waves according to the ther- 
moelastic mechanism, which can be detected by high sensi- 
tive piezoelectric devices outside the sample. Photoacoustic 
tomography visualizes the high optical contrast between dif- 
ferent soft biological tissues instead of the low acoustic con- 
trast while retaining the satisfactory spatial resolution of pure 
ultrasound imaging. 

The photoacoustic method to detect small deeply embed- 
ded tumors has been studied by Esenaliev et al? and Orae- 
vsky et al.4'1 In an attempt to advance the in vivo detection of 
skin cancer, photoacoustic imaging of layered tissues with 
optical contrast has been studied by Beenen et al.,5 Oraevsky 
et al.,6 and Karabutov et al? Axial resolution up to 10-20 
/im has been achieved. Hoelen et al. applied photoacoustic 
tomography to the detection of blood concentrations.2 The 
depth resolution of blood vessel imaging in highly scattering 
media is about 10 /jaa. Paltauf et al. adopted an optical 

method instead of piezoelectric devices for two-dimensional 
(2D) ultrasonic detection and achieved a spatial resolution 
around 10 /im.8 

All of the above photoacoustic tomography systems can 
be categorized into two detection modes: (1) the forward 
mode, with the laser irradiation and ultrasound detection on 
opposite surfaces of the sample, and (2) the backward mode, 
with the laser irradiation and ultrasound detection on the 
same surface of the sample. Although high resolution along 
the axis of the laser irradiation can be easily achieved, the 
basic problem with these two modes is the poor lateral reso- 
lution, which is limited mainly by the scanning range of the 
detector. 

When lateral resolution is the concern or the imaging pur- 
pose is to obtain a 2D image of a cross section of the sample 
perpendicular to the axis of the laser irradiation, a proper 
scheme is to arrange the receiver around the laser axis to 
detect the acoustic signals from the side of the sample. A 
focused ultrasonic transducer can be adopted to perform the 
linear, or sector, scan, and then the measured data is used to 
construct an image directly,9 which is similar to the method 
used in early pulse-echo ultrasonography. An alternative 
method is to use a wide-band point detector to receive the 
acoustic signals and then reconstruct the absorption distribu- 
tion based on a certain algorithm.10'11 

On the other hand, when employing the nonfocused ultra- 
sonic transducer for detection, the quality of the photoacous- 
tic imaging is highly dependent on the reconstruction algo- 
rithm. Examples of approximate reconstruction algorithms 
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include the weighted delay-and-sum method,12 the optimal 
statistical approach,13 and the Radon transform in far-field 
approximation.10'14'15 Exact reconstruction algorithms were 
recently derived for various detection geometries.16-19 

In this paper, a modified back-projection method based on 
the circular-scan geometry was applied to the photoacoustic 
tomography of optical absorption in biological tissues. The 
modified back-projection algorithm was deduced from an ex- 
act reconstruction solution in the time domain, which will be 
briefly introduced in the second section. In the third section, 
the experimental method, as well as the imaging results in 
tissue phantoms, will be shown. In the fourth section, the 
best resolution in the cross section of our photoacoustic to- 
mography system will be demonstrated by experimental re- 
sults. The final section will present our conclusions. 

II. MODIFIED BACK-PROJECTION 

We are interested in tissues with inhomogeneous optical 
absorption but relatively homogeneous acoustic properties. 
When the laser pulse is very short, which is the case in our 
experiments, the time required for thermal diffusion is much 
greater than the time for the thermoacoustic transition. Con- 
sequently, the effect of heat conduction in the thermoacoustic 
wave equations can be ignored. As has been described pre- 
viously in the literatures,20'21 the generation of a photoacous- 
tic wave by deposition of light energy can be expressed as 

B2p(y,t) 

dtl 
-v2

sV
2p(r,t) = 

v)ß dH(r,t) 

C„      dt     ' 
(1) 

where vs is the acoustic speed; Cp is the specific heat; ß is 
the thermal coefficient of volume expansion; and H(r,t) is 
the heat-producing radiation deposited in the tissue per unit 
volume per unit time, which can be expressed as 

H(r,t) = <p(r)y(t), (2) 

where <p(r) describes the optical energy deposition (also 
called optical absorption) within the tissue at position r; rj{t) 
describes the shape of the irradiation pulse, which can be 
further expressed as 7j(t) = S(t) for delta-function laser 
pulses. 

The object of the image reconstruction is to estimate the 
distribution of the optical absorption <p(r) of the tissue from 
a set of measured acoustic signals p(r,t). For a circular 
scanning configuration, the exact inverse solution can be de- 
rived based on the spherical harmonic function, 

<p(r) = 
4TT

2
\ —\ ids°r vsr0J  J        J-= 

dkp{r0,k) 

"   (2m+\)jm(kr) n 
(3) 

m = 0 

where \ = ßlCp; n-rlr; n0 = r0/r0; r0 is the detector po- 
sition in respect to the imaging center; k= o)lvs is the wave 

number; p(r0,k) is the Fourier transform of the pressure 
function p(r0,t); S0 is the measurement surface including 

the object under investigation; j,(-) and h\l\-) are the 
spherical Bessel and Hankel functions, respectively; and 
Pt{) represents the Legendre polynomial. The detailed deri- 
vation of this exact inverse solution can be found elsewhere. 

This inverse solution involves a summation of a series 
that is computationally time consuming. Therefore, it is de- 
sirable to simplify the solution. In the experiments, the de- 
tection radius r0 is much larger than the wavelengths of the 
photoacoustic waves that are used for imaging. Therefore, 
we can assume |&|r0> 1 and use the asymptotic form of the 
Hankel function to simplify the above exact inverse solution 
Eq. (3). The approximate inverse solution has the form of 

<p(r) = 
2irvt\J  J 

1 3p(r0,t) 
(4) 

-H», 

Actually, two compensation factors are implicit in this solu- 
tion. Firstly, we introduce a weighting factor "t," which 
compensates for the \lt attenuation of a spherical pressure 
wave as it propagates through a homogeneous medium. At 
the same time, we consider that in this type of reconstruction 
geometry, the contribution to a certain point P from an ele- 
ment of receiving area S is proportional to the subtended 
solid angle of this element S when viewed from the point P. 
The solid angle is inversely proportional to the square of the 
distance between the receiving element S and the point P, 
which leads to a compensation factor of'' lit2." Combining 
the above two factors, we obtain a compensation factor of 
"1/7" as shown in Eq. (4). 

Reference 15 gave an approximate solution of ^>(r) based 
on a three-dimensional inverse Radon transformation with 
the assumption that the size of an absorption object is much 
less than the distance between the source and the detector. In 
that case, the spherical surface over which the surface inte- 
gral is computed approximates a plane. Actually, with the 
above assumption, / is nearly a constant compared to the size 
of the absorption object. However, in most cases, for ex- 
ample, the situation in our experiments, the size of an ab- 
sorption object can be comparable to the distance between 
the source and the detector. Under this condition, the solution 
given by Ref. 15 is not appropriate, while our solution shown 
in Eq. (4) still holds and therefore is more general. 

Although the modified back-projection reconstruction 
shown in Eq. (4) is valid for three-dimensional distributions 
of photoacoustic sources, we here consider only the imaging 
of thin slices of absorption objects in turbid media to evalu- 
ate our imaging system. The slices of absorption objects lie 
in the imaging plane perpendicular to the axis of laser irra- 
diation. The photoacoustic signals from turbid media outside 
the imaging plane are regarded as background that will not 
provide information for the imaging of absorption objects. In 
this case, the detection of acoustic pressures over the 2TT 

angle in the imaging plane is sufficient to achieve high reso- 
lution in the imaged cross section. For 2D imaging, the ap- 
proximate inverse solution for the circular-scan geometry 
can be represented by 
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where T(r0,t) is the piezoelectric signal detected by the 
transducer, and * represents convolution. Then, dp(r0,t)/dt 
in Eq. (5) can be calculated by an inverse Fourier transfor- 
mation, 

<fe(r0,f) 

dt 
= FFT 

— i(x)T(r0,ü))W((o) 

27rJ_0 

P(O))R(ü)) 

>-itoT{r0,(o)W(o)) 

P(<o)R(a>) 
exip( — ict)t)dt,     (7) 

where W((o) is a band-pass window function that suppresses 
the frequency component outside the detectable spectrum of 
the transducer. 

FIG. 1. Experimental setup. 

?(r) = —^-r    do0- 
2TT\V.J<>O       * 

1 dp(r0,t) 

dt Hr0-r\/K 

which is an integral over 0O around the thin slice of the 
object. From Eqs. (4) and (5), we see that the reconstruction 
of the absorption distribution can be fulfilled by back- 
projection of the quantity 

1 9p(r0,t) 

dt /= \r0-r]/v 

instead of the acoustic pressure p(r0,t). 
IfR(t) is the impulse response of the detector and P{t) is 

the pulse duration of the laser, in the time domain, we have 

T(r0,t)=p(r0,t)*R(t)*P(t), 

III. TOMOGRAPHY IN BIOLOGICAL TISSUES 

A. Experimental method 

(5) A schematic diagram of our experimental setup for pho- 
toacoustic tomography is shown in Fig. 1, where a laboratory 
coordinate system [x,y,z] is also depicted. A flash-lamp- 
pumped Tksapphire laser operating at a wavelength of 789.2 
nm with a pulse energy of approximately 30 mJ, a pulse 
duration of 4.7 ns FWHM, and a repetition rate of 10 Hz, 
was used as the light source. The laser is expanded to a 1.5 
cm diameter beam when heating the sample surface from 
above along the laser axis; this provides an incident power 
density within the limit of safety for human skin (100 
mJ/cm2) according to the ANSI standard.22 In our experi- 
ments, the area in a cross section of the sample that is im- 
aged is defined by the size of the laser beam. The wave form 
and the frequency spectrum of the laser pulse are demon- 
strated in Figs. 2(a) and 2(b), respectively, where the curve in 

(6) (b) shows the component of Ä(w) in Eq. (7). 

-1.0 
o.o 

20       30 
Time (ns) 

(a) 

50 100 150 
Frequency (MHz) 

(b) 

200 

Fio. 2. (a) Wave form and (b) frequency spectrum of 
the 4.7 ns laser pulse, (c) Impulse response and (d) 
frequency response of the 2.25 MHz transducer. 
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FIG. 3. Photoacoustic tomography of a slice of chicken gizzard that was 
buried 0.5 cm deep in the chicken breast slab, (a) Reconstructed image; (b) 
picture of the imaged cross-section of the sample. 
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FIG. 4. Photoacoustic tomography of two slices of chicken gizzard that were 
buried 0.5 cm deep in the chicken breast slab, (a) Reconstructed image; (b) 
picture of the imaged cross-section of the sample. 

The wide-band nonfocused transducer (V323, Panamet- 
rics) has a 2.25 MHz central frequency and a 6 mm diameter 
of the active element. The impulse response and the fre- 
quency response of the transducer are demonstrated in Figs. 
2(c) and 2(d), respectively, where the curve in Fig. 2(d) 
shows the component of P(w) in Eq. (7). Because the fre- 
quency bandwidth of the laser pulse is much broader than 
that of the transducer, P(<o) is constant and Eq. (7) can be 
simplified as 

dp(r0,t)  ( 
dt 

1   f+° 

2irJ^„ 

iu)T(r0,(o)W((o) 
exp(*-io>t)dt.     (8) 

The transducer was mounted on a rotation stage that was 
driven by a computer-controlled step motor. The transducer 
scanned around the sample with a rotational step size of 
1.125° and a rotational radius of 5 cm. The transducer and 
the sample were immersed in water. A low-noise pulse pre- 
amplifier (500 PR, Panametrics) amplified the acoustic sig- 
nals received by the transducer and sent signals to an oscil- 
loscope (TDS-640A, Tektronix). Then, 30 times averaged 
digital signals were transferred to a computer for imaging. 

The experiments were performed with thin slices of giz- 
zard tissues or red rubber pieces placed 0.5 cm deep in fresh 
chicken breast muscle slabs. For 789.2 run light the reduced 
scattering coefficient fi's and the absorption coefficient fia 

for chicken breast tissue are about 1.9 cm"1 and 0.1 cm"1, 
respectively.23 Under this condition, the effective optical at- 

tenuation coefficient /ueff is 0.77 cm"'. The blood concen- 
tration in the chicken gizzard tissue is much higher than that 
in the chicken breast muscle. According to our measure- 
ments, the absorption contrast between them is greater than 
200%. In the experiments, the sizes of the chicken breast 
slabs were larger than the size of the laser beam. Therefore, 
the imaged area is only a part of a cross section of the 
sample. 

B. Imaging results 

Image reconstruction utilized the 2D modified back- 
projection algorithm described in Eq. (5). We used 1.5 
mm/fis as the estimated sound velocity vs in soft tissues. 
When a detected sample has nearly homogeneous acoustic 
properties, the small difference between the actual sound ve- 
locity and the estimated value will not cause any distortion in 
the relative location of the absorption distribution in the 
sample. In other words, the absolute locations and sizes of 
the detected targets inside the sample may be changed; how- 
ever, their relative positions will not be altered. 

Figure 3(a) shows the reconstructed image of a thin slice 
of gizzard tissue buried 0.5 cm deep in a chicken breast slab. 
The gizzard tissue has a nearly rectangular shape (3 mmX6 
mm) in the imaging plane and a thickness of about 1 mm. 
The picture of the cross section of this sample is shown in 
Fig. 3(b) for comparison. In the second sample, two slices of 
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FIG. 5. Photoacoustic tomography of a slice of rubber that was buried 0.5 
cm deep in the chicken breast slab, (a) Reconstructed image; (b) picture of 
the imaged cross-section of the sample. 
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FIG. 6. Photoacoustic tomography of three slices of rubber circles that were 
buried 0.5 cm deep in the chicken breast slab. The radii of the three circles 
are 0.4 cm, 0.3 cm, and 0.1 cm, respectively, (a) Reconstructed image; (b) 
picture of the imaged cross-section of the sample. 

gizzard tissues are placed 0.5 cm deep in a chicken breast 
slab, where the sizes of the two gizzard pieces are different. 
The reconstructed imaging is shown in Fig. 4(a) for compari- 
son with the picture of the sample in Fig. 4(b). 

Based on our experimental system as well as the recon- 
struction algorithm, the results of the 2D photoacoustic to- 
mography are satisfying. The highly absorbing objects in tur- 
bid media with comparatively low absorption were localized 
well. The boundaries between the gizzards and the chicken 
breast are clearly imaged. 

Because both the gizzards and the chicken breast muscles 
are soft biological tissues, it is difficult to avoid deformation 
when the samples were photographed. For this reason, the 
shapes of the gizzard slices in the reconstructed imaging 
have minor discrepancies with those appearing in the photo- 
graphs. To overcome this problem, slices of red rubber pieces 
were used as absorption objects in some of our experiments. 
Figure 5(a) shows the reconstructed image of a slice of rub- 
ber (with a 1 mm thickness) that was buried 0.5 cm deep in 
a chicken breast slab; it fits perfectly with the picture of the 
sample shown in Fig. 5(b). In another sample, three circles of 
rubber slices with a 1 mm thickness, where the radii of the 
three circles are about 4 mm, 3 mm, and 1 mm, respectively, 
were adopted as absorption objects. In Figure 6(a), the 
shapes and sizes as well as the localizations of the three 
rubber slices are all imaged well compared with the picture 

in Fig. 6(b). In the reconstructed images in Figs. 3-6, we can 
see some intensity fluctuations around the absorption objects, 
which come mainly from the photoacoustic signals generated 
in the background chicken breast tissues. 

IV. TESTING FOR RESOLUTION 

In order to quantify the actual resolution of our detection 
system as well as the reconstruction algorithm, well- 
controlled samples with high absorption contrast in transpar- 
ent media were measured for imaging. Usually, the expected 
highest spatial resolution is estimated to be the half wave- 
length at the center frequency of the transducer. However, 
when the frequencies of the detected photoacoustic signals 
determining the spatial resolution are higher than the center 
frequency, the achievable spatial resolution is better than the 
estimated resolution at the center frequency. Therefore, we 
estimate the possible best resolution to be the half wave- 
length at the highest detectable photoacoustic frequency. 

Pairs of parallel lines printed on transparencies were 
adopted as ideal testing samples, as shown in Fig. 7(a). The 
length and width of the dark lines was 8 mm and 0.3 mm, 
respectively. The gap d between the two lines was set to be 
0.1 mm, 0.2 mm, and 0.3 mm, respectively. Each piece of 
transparency with a pair of dark lines was placed in the im- 
aging plane. The 2.25 MHz nonfocused transducer scanned- 
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FIG. 7. (a) Schematic of a pair of parallel lines printed 
on transparency. The length of the two lines is 8 mm; 
the width of the two lines is 0.3 mm; and the gap be- 
tween the two lines was d. The radius of the circular- 
scan is 50 mm. (b), (c), and (d) are the reconstructed 
images of the pairs of parallel lines with a gap rfof 0.1 
mm, 0.2 mm, and 0.3 mm, respectively. The profiles of 
reconstructed absorption intensities along the dash lines 
in 2D images are demonstrated as the right pictures in 
(b), (c), and (d), respectively. 

around the transparency with a radius of 5 cm. The detect- 
able frequency band of the transducer is from 0 to 4.5 MHz. 
Therefore, the estimated highest spatial resolution is 0.17 
mm. The reconstructed 2D images of these pairs of lines are 

- Edge-spread function 
- Line-spread function 

100 150 200 
Position (urn) 

250 

FIG. 8. Edge-spread function and line-spread function of our photoacoustic 
imaging system with a 10 MHz transducer. 

shown in Figs. 7(b), 7(c), and 7(d) for d equals 0.1 mm, 0.2 
mm, and 0.3 mm, respectively. The intensity profiles along 
the dashed lines (y=1.5 cm) in the 2D images are also pre- 
sented. When d equals 0.2 mm or 0.3 mm, the two parallel 
lines can be recognized with an obvious gap between them. 
However, when d equals 0.1 mm, we can see only one line in 
the reconstructed image. In each image, there are some weak 
intensity fluctuations around the pair of lines, which come 
mainly from acoustic reflection at the edge of the transpar- 
ency piece. The results in Fig. 7 show that with the circular- 
scan method and the modified back-projection algorithm, we 
can achieve a spatial resolution of —0.2 mm. 

The center of the circular scan in the experiments is taken 
at the center of each reconstructed image. We can see that in 
these 2D images, the spatial resolution at a position near the 
imaging center is higher than that at a longer distance from 
the imaging center. This kind of blur in the reconstructed 
image is mainly caused by the physical size of the trans- 
ducer. The blur is greater when the physical size of the trans- 
ducer is larger, or the distance from the imaging center is 
larger. 
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We quantified the spatial resolution of our imaging system 
with a 10 MHz wide-band (140% at -60 dB) cylindrically 
focused transducer (V312, Panametrics). The transducer has 
a 6 mm diameter active element and is nonfocused in the 
imaging plane. The estimated highest spatial resolution of 
our imaging system with this transducer is about 45 fixa. A 
well-controlled phantom made from red rubber with a high 
optical absorption contrast and a sharp edge has been imaged 
to obtain the edge-spread function. A line-spread function 
was obtained through differentiating the profile of the edge- 
spread function. Both the two profiles are shown in Fig. 8. 
The line-spread function shows a full width at half maximum 
of about 60 /im, which shows that the spatial resolution of 
our photoacoustic imaging system is near the diffraction 
limit of the detected photoacoustic signals. 

V. CONCLUSION 

Pulsed-laser induced photoacoustic tomography of ab- 
sorption in biological tissues has been studied. A modified 
back-projection algorithm derived from an exact inverse so- 
lution was used to reconstruct the signals received by a wide- 
band nonfocused transducer that scanned circularly around 
the sample under detection. Reconstructed images of gizzard 
slices and rubber slices buried in chicken breast tissues agree 
well with the pictures of samples. Experiments also quanti- 
fied the highest 2D resolution that can be achieved by this 
imaging system: using a detection of 2ir view, the spatial 
resolution is nearly diffraction limited by the detected pho- 
toacoustic waves. 

Our photoacoustic detection system with the modified 
back-projection reconstruction algorithm is proved to be an 
effective method for biological tissue imaging with high con- 
trast and high spatial resolution. If a high resolution along 
the laser axis is required at the same time, scanning of acous- 
tic signals along the axis will be necessary. 
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An analytic explanation of the spatial resolution in thermoacoustic or photoacoustic reconstruction is pre- 
sented. Three types of specific recording geometries, including spherical, planar, and cylindrical surface, as 
well as other general cases, are investigated. Analytic expressions of the point-spread functions (PSF's), as a 
function of the bandwidth of the measurement system and the finite size of the detector aperture, are derived 
based on rigorous reconstruction formulas. The analyses clearly reveal that the dependence of the PSF's on the 
bandwidth of all recording geometries shares the same space-invariant expression while the dependence on the 
aperture size of the detector differs. The bandwidth affects both axial and lateral resolutions; in contrast, the 
detector aperture blurs the lateral resolution greatly but the axial resolution only slightly. 

DOI: 10.1103/PhysRevE.67.056605 PACS number(s): 43.35.+d, 87.57.Ce, 43.60.-t-d, 43.80.-t-p 

I. INTRODUCTION 

In the last decade, thermoacoustic or photoacoustic to- 
mography of soft tissue utilizing excitation from a pulsed 
electromagnetic (EM) energy source, such as radio frequency 
or laser, has attracted considerable attention [1-12]. With 
this technique, it is assumed that, following a short pulse of 
EM illumination, a spatial distribution of acoustic pressure 
inside the tissue is simultaneously excited by thermoelastic 
expansion, which acts as a source for acoustic response. The 
intensity of the acoustic pressure is strongly related to the 
locally absorbed EM energy. A wide range of EM absorption 
coefficients in soft tissue contributes to a good contrast be- 
tween different types of tissues. The effect of thermal diffu- 
sion on thermoacoustic or photoacoustic waves in tissue is 
always ignored, since the EM pulse duration is often so short 
that the thermal conduction time is far greater than the 
acoustic transit time through the heterogeneities of the EM 
energy depositions. The acoustic waves from the initial 
acoustic source propagate toward the surface of the tissues 
with various time delays. Ultrasound detectors are placed 
around the tissue to record the outgoing acoustic waves, re- 
ferred to as the thermoacoustic or photoacoustic signals, 
which carry information about EM absorption as well as 
about the acoustic properties of the tissue. For medical im- 
aging and diagnostics, an appropriate reconstruction algo- 
rithm is required to map the initial acoustic sources, or EM 
absorption distribution. 

To detect thermoacoustic signals, one approach is to use 
focused ultrasound transducers, in which the lateral resolu- 
tion is determined by the focal diameter of the transducer 
and the axial resolution by the bandwidth [5,6]. Another ap- 
proach is to use small-aperture unfocused detectors—ideally, 
point detectors—that can receive ultrasound from a large 

*Author to whom all correspondence should be addressed. FAX: 
979-845-4450; electronic address: LWang@tamu.edu; URL: 
http://oilab.tamu.edu 

angle of acceptance. Thus far, rigorous reconstruction algo- 
rithms have been reported with point-detector measurements 
from idealized recording configurations, including the fully 
enclosing spherical recording surface [7], the planar record- 
ing surface of an infinite extent [3,8], and the cylindrical 
recording surface of an infinite length [9]. In these algo- 
rithms, the acoustic property of the tissue is often assumed to 
be homogenous as the speed of sound in soft tissue is rela- 
tively constant at ~ 1.5 mm//*s. Details can be found in Ref. 
[7] of the reconstruction formulas for spherical geometry and 
in Refs. [8,9,11] for the planar and cylindrical geometries. 

Spatial resolution is one of the most important parameters 
in thermoacoustic reconstruction. Acoustic inhomogeneity 
blurs the reconstructed image, but in some cases, the blurring 
can be corrected. A limited view also affects spatial resolu- 
tion due to lack of sufficient data; in this case, the recon- 
struction is incomplete and reconstruction artifacts occur 
[12]. These two topics will not be addressed in this paper. 
There are two other main factors that limit spatial 
resolution—the finite bandwidth of the detection system and 
the size of the detector aperture. Past research work has only 
estimated the spatial resolution in thermoacoustic tomogra- 
phy based on measurements or numerical simulations. No 
theoretical analysis has been reported. 

In this paper, a complete theoretical explanation of the 
degree of spatial resolution that results from varying the 
bandwidth as well as the detector aperture will be presented. 
Analytic expressions of point-spread functions (PSF's) on 
the spherical, planar, and cylindrical recording surfaces will 
be explicitly derived. The paper is organized as follows. In 
Sec. II, the inverse problem and the reconstruction formulas 
for thermoacoustic tomography will be briefly reviewed. De- 
tailed derivations of bandwidth-limited PSF's in the above 
three measurement geometries as well as more general cases 
will be presented in Sees. Ill A, III B, III C, and III D, respec- 
tively; and resolution will be discussed in Sec. Ill E. In Sec. 
IV, detailed derivations of PSF's as a function of detector 
aperture size will be shown in Sees. IV A, IV B, and IV C. 
Section V will provide discussion and conclusions. 
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n. RECONSTRUCTION FORMULAS 

We will first briefly review the inverse problem and the 
rigorous reconstruction formulas for thermoacoustic tomog- 
raphy. It is well known that, in response to a heat source, the 
pressure p(r,t) at position r and time t in an acoustically 
homogeneous medium obeys the following equation [13]: 

Id2 ß   d 
(1) 

where Cp is the specific heat, H{r,t) is the heating function 
defined as the thermal energy deposited by the EM radiation 
per time and volume, ß is the isobaric volume expansion 
coefficient, and c is the speed of sound. The heating function 
can be written as the product of a spatial absorption function 
and a temporal illumination function: 

H(r,t)=A(r)I(t). (2) 

Assuming that the illumination is a Dirac «5 function such as 
I(t) = S(t), and taking the following Fourier transform on 
variable t = ct, 

r+°°           _ 
p(r,k) = I     p{r,t)exp(ikt)d7, 

J -00 

the solution of Eq. (1) becomes the integral 

(3) 

p(r0,k)=-ikc2
Vj j J\/3r^(r)Gt(r,r0),       (4) 

where -q=ßlCp and GA(r,r0) is the Green's function satis- 
fying the following equation: 

(W2 + k2)Gk(r,r0)=-S(r-r0). (5) 

In general, the Green's function in three-dimensional free 
space can be written as [14] 

Gk(r,r0) = 
exp(;A:|i—r0|; 

47r|r-r0| 
(6) 

Actually, the initial thermoacoustic pressure excited by the 
S(t) EM illumination is equal to p0(r) = r(r)A(r), where 
the Grüneisen parameter r\r)=?7(r)c2 may be inhomoge- 
neous. Then, Eq. (4) can be expressed by the following form: 

p(r0,k) = 
-///,■ 

d3rGk(r,r0)p0(r). (7) 

The inverse problem is to reconstruct the absorption dis- 
tribution A(r) or the initial thermoacoustic pressure distribu- 
tion^1') fr°m a set of data/j(r0,0 orp(r0,k) measured at 
position r0. In general, the Green's function can be ex- 
panded in terms of some appropriate functions for the corre- 

sponding recording geometries. Then, based on the orthogo- 
nality of the appropriate functions, reconstruction formulas 
can be derived. 

In spherical recording geometry, it is assumed that the 
recording surface is a spherical surface r0 = (r0,60,<p0) in 
the spherical polar coordinates r=(r,0,<p), where 9 is the 
polar angle from the z axis and <p is the azimuthal angle in 
the x-y plane from the x axis. The sample under study lies 
inside the sphere, i.e., A(r)=A(r,d,<p) where r<r0 and 
A(r) = 0 when r>r0. The rigorous reconstruction formula 
for A(r) can be written as [7] 

A(r)=     2 2 dilQ\     dkp(r0,k) 
2TT c rj J  Jn0       Jo 

"    (2m+l)jm(kr) n 
(8) 

where dü,0 = sin ^d^d<p0; n=r/r and n0 = r0/r are unit 
vectors; jm(-), h%\-), and Pm(-) are the spherical Bessel 
function of the first kind, the spherical Hankel function of the 
first kind, and the Legendre polynomial function, respec- 
tively. In addition, the integral range over variable k in Eq. 
(8) can extend to from -°° to 0 by simply taking the com- 
plex conjugate and using the following properties: 
p*(r0,k)=p(rQ,-k), D"„(z)]*=7„(z), and [h«\z)]* 
= h^\z) when z is real and positive, where "*" stands for 
the complex conjugate. 

In planar recording geometry, it is assumed that the mea- 
surement surface is the z = 0 plane, i.e., r0= (x0,y0,0) in the 
Cartesian coordinates r=(x,y,z). The sample lies above the 
plane, i.e., A(r)=A(x,y,z) where z>0 and A(r) = 0 when 
z<0. The rigorous reconstruction formula for A(r) can be 
written as [8,11] 

A(x,y,z)=      j 2 dx0dy0\     dkp(r0,k) 
4IT C   7) J    J-oo J -oo 

rp=l*l 
x du dv 

;P=o 

X exp[ - iz sgn(£) yjk2 - p2]exp[iu(xQ-x) 

+ iv(y0-y)l (9) 

where p=^u2 + v2, sgn(Ä:)=l when ä:>0, and sgn(£)=-l 
when k<0. 

In cylindrical recording geometry, it is assumed that the 
measurement surface is a circular cylindrical surface r0 

— (p0,(p0,z0) in the circular cylindrical coordinates r 
= (p,(p,z). The sample lies in the cylinder, i.e., A(r) 
=A(p,<p,z) when p<p0, and ^4(r) = 0 when p>p0- The 
rigorous reconstruction formula for A(r) can be written as 
[9,11] 
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bandwidth-limited analytic expressions of the PSF's to be 
derived below for the different geometries. 

A. Spherical geometry 

The point source at ra = (ra,6a,(pa) in the spherical co- 
ordinates can be written as 

A(r)=--S(r-ra)S(<p-(pa)S(cose-cosda).    (12) 

The Green's function can be expanded according to the 
following identity (rQ>ra,k>0) [14]: 

FIG. 1. Diagram ofthe recording geometry: a recording surface Gk(ra,r0) = —2^ (2l+l)j,(kra)h,   (kr0)P,(na-no), 
St completely encloses another recording surface 50; there is a (]3\ 
point source A at ra inside SQ; R is the distance between an arbi- 
trary point at r and the point source A; r0 and r, point to a detection       where n = r Ir 

Replacing^(r0,k) byp'{r0,k) inEq. (8) and considering 
the following identity [14]: 

element on the surfaces S0 and St, respectively. 

1        C2v        r+=°       f+°<> 
A(p,<p,z)=      3 2 d<p0\     dzA     dkp(rQ,k) 

lir c 7) Jo J -»       Jo 

r+k 
X I     dyexp[iy(z0-z)] 

j   I    d(lQPi(na-n0)Pm(n0-n)=jj^8lmPl(na-n), 

(14) 

X  2   exp[in(^0-9')] 
Jnip^-y2) 

the resulting reconstruction for^4(r) is 

//^(Po/**^)' 

(10) ^(r)=Ü H{k)k2dk^ (2»i + l) 
0 m = 0 

X POT(nfl • n)jm(kra)jm(kr). 
where ./„( •) and Z/^'C ■) are the Bessel function of the first 
kind and the Hankel function of the first kind, respectively.      p ^ accQunt ^ foUowi     identi    [15]. 
In addition, the integral range over variable k in Eq. (10) can 
extend to from — °° to 0, by simply taking the complex con- 
jugate and using the following properties: p*(rQ,k)=p(rQ, 
-k), [J„(z)]*=J„(z), and [H"\z)]*=H«\z) when z is        ~o 
real and positive. 

(15) 

" sin(kR) 
Z  (2m+l)Pm(na-n)jm(kra)jm(kr)=-1-B—=Jo(kR), 

kR 
(16) 

m. BANDWIDTH-LIMITED PSF 

As shown in Fig. 1, assuming a point source A(r) = S(r 
— ra) at rfl, the pressure at the recording point r0 can be 
expressed as 

where R = ^r2 + r2-2rar cos(na■ n), one can obtain 

Ab(r)- 
i   r+= 

H(k)j0(kR)k2dk. (17) 

p{r0,k)=-ikc2r/Gk(ra,r0). 
Particularly, if H(k)=l  for k=0—>°°, considering the 

^   '      following identities [14]: 

r+co 

Jo 
{kr)jm{kra)k

2dk=^I5{r-ra), (18) 
Suppose the detection system is bandlimited in the 

temporal-frequency domain and characterized by a low-pass 
function H{k). The amplitude of the acoustic wave vector 
k=w/c, where w is the acoustic angular frequency. The de- 
tected signal at the recording surface r0 becomes p'(r0,k) 
=H(k)p(rQ,k) instead of p(r0,k). But the reconstruction 
formulas, Eqs. (8)—(10), for point-detector measurements in 
the spherical, planar, and cylindrical recording geometries, 
respectively,   remain   the   same.   Replacing  p(r0,k)   by      Eq. (15) reduces to a point source the same as the expression 
p'(r0,k) in these reconstruction formulas will give us the      inEq. (12), which actually verifies the reconstruction Eq. (8). 

2  (2m+l)Pm(na-n) = 4<rr8((p-<pa)6(cos6-cosea), 
m = 0 

(19) 
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B. Planar geometry 

The point source at ra=(xa ,ya ,za) in the Cartesian coor- 
dinates can be written as 

A{x,y,z)= S(x-xa)S{y-ya)S{z-za). 

The Green's function can be expanded as [14] 

(20) 

1      f  f  f+» ,   exp[z'K-(i +» iWexp[;K-(r0-ro)] 

k2 

(21) 

where K=(Kx,Ky,Kz). 
Using the detected signal at the recording surface r0, 

p'(r0,k)=H(k)p(r0,k), to replace p(r0,k) in the recon- 
struction Eq. (9), and considering the following identities: 

r + w 

exp[i(u+Kx)x0]dx0=2TrS(Kx+u), 
J -oo 

r + co 

I      exp[i(v+Ky)y0]dy0=27rS(Ky+i>), 

r+»       exp(-iKzza) 

(22) 

(23) 

2 _;,2 -pl-k 

,,sexp[zzasgn(AQVft2-p2]      ,,|^ 
= 7irsgn(£) ,.,      >, ,     \k\>p, 

the resulting reconstruction for A(y) is 

(24) 

l     r+» r fp=W 
Ab(W)=J^\_JakH(k)\  J        dud, 

X exp( - iuAx-ivAy) 

exp[-/ sgn(Är)AzV&2-p2] 
Xsgn(Ä:)- 

VFV 
(25) 

Particularly, if H(k)=l for -«Xfc<oo) Eq. (26) be- 
comes a point source as the original one in Eq. (20). 

In general, by changing the integral from the Cartesian 
coordinates into the spherical coordinates, 

(u,v,w)^>k=(k,0,(p), 

(Ax,Ay,Az)-+R={R,a,ß), 

where i?2 = (Ax)2 + (Aj>)2 + (Az)2, one can rewrite Eq. (26) 
as 

Ab(x,y,z)=j^ j j j exp(-ik-R)H(k)d3k. 

(27) 

The integration of Eq. (27) can be further simplified to 

1 

(2-, 

1      f+c° 
Ab{x,y,z)=j—f^    H(k)k2dk 

X      exp( - ikR cos y)sin ydyl ir,   (28) 
Jo 

where y is the angle between k and R, i.e., 

Ab{x,y,z)=T^\     H(k)j0(kR)k2dk. (29) 
ITT    Jo 

C. Cylindrical geometry 

The point source at ra = {pa,<pa,za) in the cylindrical co- 
ordinates can be written as 

A(p,<p,z)= -S(p- pa)S{q>- ipa)S(z-za) 

1 1     +" 
= -S(p-pa)—-  2J    exp[im(<p-<pa)] 

p nrm=-«> 

1   f+° 
'   I 
'2-77 J-oo 

exp[ikz(z-za)]dkz. (30) 

where Ax=x-xa, Ay=y-ya, andAz = z-za. 
In the evaluation of the integral in Eq. (24), we replaced k      [ 11,14,17] 

with k+iy as suggested in Ref. [14], where y is a small 
positive real number. Since there will be some damping of 
the wave in a physical system, we then complete a contour 
integral in the complex plane and let y approach zero. 

Changing the integration order of du dv and dk, and fur- 
ther letting w = sgn(k)Jk2-p2, Eq. (25) reduces to 

The   Green's   function   can  be   expanded   as   (/c>0) 

] 
+ 00 

Gk(ra,r0)=-r-  2)    exp[im(cpa-cpo)] 
OTT m--m 

r+oo 
X        dkzexp[ikz(za-z0)] 

J -00 

Ab{x,y,z)=-7^TTj  J  j^dudvdw 

X exp( - iu Ax - i vAy - iwAz)H(k), 

XJJ^pJ/^'Vpo), (31) 

where fi=^k2-kz when k2<k2, and p. = i4k2
z-k2 when 

k2>k2. 

(26) 

where k2 = u2 + v2 + w2. 

Using the detected signal at the recording surface r0, 

p'(r0,k)=H(k)p(r0,k) to replace p(r0,k) in the recon- 
struction Eq. (10), and considering the following identities: 
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f Jo 
d(p0exp[i<p0(n-m)] = 2TrS„m, 

/: 

(32) 

(33) dz0exp[iz0(y-kz)] = 2irö(y-kz), 

the resulting reconstruction for^4(r) is 

1    f+°°        ~      f+* 
Ab(p,(p,z)=-r-j        kdkH{k)\     dkzexp[ikz(za-z)] 

4ir  Jo J-k 

+ CO 

X  2    exTp[im(<pa-<p)]Jm(fipa)Jm(fip). 
m=-co 

(34) 

Changing the integration order of variables k and kz and 
taking into account the following identity [15]: 

2    exp[im(ipa-(p)]Jm(/J,pa)Jm{/J.p)=J0(ßD), 

(35) 

where D= VPa + P2-2 p0p cos(<pa-(p), one can simplify Eq. 
(34) to 

1 
Ab(p,<P,z)=j^i r J -co 

efäz exp[ iA:z(za—z) ] 

f +00 

X        kH(k)dkJ0{ixD). 
J|*xl 

(36) 

By changing the integral variable k with /*= \lk2-k2
z, one 

can get 

1    f+° 

Jo 

<afA:z exp[ — ikzAz] 

H(k)/id/iJ0(/iD), (37) 

where A:2 = A:2 + /i2, Az = z-z0. 
Then, one can denote Ax=x-xa=Z>cosyS and Ay=}> 

—ya=D sin /?, and introduce &,= /* cos a and ky=fi sin a, 
where Z>= -J(Ax)2 + (Ay)2 and fi=yjk2 + kj, and rewrite 
the far right integral in Eq. (37) as 

r+oo 

Jo 
dfiH(k)J0(^D) -r\r 2TT J    J-oo 

dkxdky 

X exp( - ifc^Ax - ikxAy)H(k), 

(38) 

where Ä:2 = A:2 + /tt
2 = Ä;2 + ^ + A:2. 

Therefore, Eq. (37) can be rewntten as 

Ab(p,<p,z)-- 
(2 ̂ J7L dkzdzxdkvH(k) 

X exp( - /£, AJC - z'&zA;y - i*z Az),    (39) 

which is the same as Eq. (26). Thus, Ab(p,<p,z) takes the 
same form as Eq. (29), 

Ab(p 
1     f+< 

27T   Jo 
H(k)j0(kR)k2dk,        (40) 

where 

JR = V(Ax)2 + (Ay)2 + (Az)2 

= Vp^ + P2-2papcos((pa-9) + (Az)2. 

Particularly, if #(it) =1 forfc=0->°°, Eq. (39) reduces to 
a point source the same as the original one. 

D. General geometry 

We have proved that the bandwidth-limited PSF's in the 
three different geometries share the same expression as 
shown in Eqs. (17), (29), and (40). As described in these 
equations, the PSF is independent of the position of the point 
source but dependent on the distance R from the point 
source. Therefore, the PSF due to bandwidth is space invari- 
ant. 

Actually, the space invariance of PSF due to bandwidth 
can be extended to more general recording geometries. As 
mentioned in Ref. [11], the reconstruction for A(r) can be 
expressed by a linear integral: 

A(r) = I \ dSol dkKk(r0,r)p(r0,k),        (41) 
J    JS0 Jk 

where S0 is the recording surface, which covers the object 
under study. 

The inverse problem for thermoacoustic reconstruction is 

to seek such an integral kernel Kk(r0,r) for a particular re- 
cording surface. For the spherical, planar, and cylindrical re- 

cording geometries, the integral kernel Kt(r0,r) can be ex- 
plicitly given as shown in Eqs. (8), (9), and (10), 
respectively. For other recording geometries, the integral ker- 

nel Ä^(r0,r) is more complicated or even nonexistent ana- 
lytically. 

As shown in Fig. 1, suppose another recording surface 
Si, which could be a spherical, planar, or cylindrical record- 
ing surface, can completely enclose surface S0. Then, based 
on Green's theorem [17], the pressure p{rx ,k) at Sj can be 
computed by the pressure p(r0,k) on surface S0, 

<9G*(r, ,r0) 
p(ri,k)=j }   dS0\p(r0,k) 

<?«n 

-G*(r,,r0) 
dp(rQ,k) 

(42) 
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where dldns
Q is the normal component of the gradient on since there is no source in the volume between the surfaces 

surface S0 and points outward away from the acoustic      So m& ^i. 
source; and r0 and r, represent detection positions on sur- Equation (48) indicates that the new source Ab(r) could 
faces S0 and 5j, respectively. Since the reconstruction based be restored from the value H(k)p{rx ,k) on surface 5j, if an 
on Eq. (41) from the measurement on surface S0 is exact, the exact reconstruction from data only on surface 5j does exist, 
pressure p{rl ,k) on surface Sx must be identical to the ther- In other words, the reconstruction for A(r) from the mea- 
moacoustic pressure directly generated by the source A (r):        surement with the bandwidth H{k) on surface S0 is identical 

to the reconstruction from the measurement with the same 
bandwidth H{k) on surface Sj that fully encloses S0. Fortu- 
nately, we have already obtained the exact reconstruction 
formulas from measurements on such a surface 5j as the 
spherical, planar, or cylindrical recording geometries. There- 
fore, the PSF of the point source at ra as a function of band- 
width H(k) from the measurement on surface S0 is nothing 
but the same expression as Eqs. (17), (29), and (40) for the 
above three specific recording geometries, respectively. 

p(.rt,k) = \\l dV0A{r)Gk{rur), (43) 

where VQ is the volume enclosed by S0. 
Now, considering the bandwidth characterized by H(k), 

one can rewrite the reconstruction Eq. (41) as 

Ab{r) 
J    JSn J-°° 

dkKk(r0,r)[H(k)p(r0,k)l 

(44) 

In other words, Eq. (44) gives the exact reconstruction of a 
new and unique source Ab(r) from H(k)p(r0,k) measured 
on surface S0: 

H(k)p(r0,k) = j j J  dV0Ab(r)Gk(r0,r).     (45) 

Based on Green's theorem, the pressure on surface S\ can be 
computed by the pressure H(k)p(r0,k) on surface S0, 
which is found equal to //(£)/>(ri ,k) with considering Eq. 
(42): 

j  jsdS0\[H(k)p(r0,k)] 
dGk(ri ,r0) 

-Gk{rur0) 
d[H(k)p(r0,k)] 

dri 

-H(k)j jsdS0\p(r0,k) 
dni 

■5i(r,,r0) 
dp(r0,k) 

dni 

=H{k)p{ruk). (46) 

This pressure must be identical to the thermoacoustic pres- 
sure directly generated by the new source Ab(r) in volume 
V0, 

i.e., 

Ill 

H(k)p(r 

dV0Ab(r)Gk(rl,r) = H(k)p(ri,k),     (47) 

■»-/JL dV,Ab{r)Gk{rur),      (48) 

E. Resolution 

For convenience, we can denote the PSF symbolically as 
-EPSF 

fiSF(R) 
1     r+= 

~2^ Jo H(k)j0(kR)kzdk, (49) 

where the subscript b represents bandwidth, and i? = |r 
— rj. Equation (49) can be rewritten in another form as 

•FTW= 
■ i 

ATTR 

dH(R)     dH(-R) 

dR dR 
(50) 

if we let H(-t) = H(t) and define the following Fourier 
transform: 

H(t)- 
217-J-oc 

H(k)exp(-ikt)dk, (51) 

where H(t) is the corresponding temporal signal of H(k). 
If H{k) has a cutoff frequency kc, H(k) = 1 when k 

=££c, H(k) = 0 when k>kc, the integral in Eq. (49) can be 
carried out, 

J^{R)=^ä\k^n^2 j0(kR)k2dk 

-cos(kcR) 

2"*r JO 

kc    I sin(A:cÄ) 
2tT2R2\    krR 

i.e., 

jf¥{R) = 
k\ jx(kcR)    K 3y,(M) 

2TT
2
    kcR       6T?     kcR 

By normalizing the PSF of Eq. (53), one can get 

3y,(M) 
^{R)=- krR 

(52) 

(53) 

(54) 
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(a) 

Displacement from the point source (mm) 

(b) 

■-S o.o TO 

0.0 0.5 1.0 1.5 2.0 

Displacement from the point source (mm) 

(c) 

FIG. 2. An example of the PSF as a result of the bandwidth (0, 4 MHz): (a) a gray scale view and (b) a profile through the point source, 
(c) Comparison of the PSF's with different bandwidths: dashed line, (0, 2 MHz); solid line, (0, 4 MHz); dotted line, (2 MHz, 4 MHz); 
dot-dashed line, 4 MHz. 

The fall width at half maximum (FWHM) of the PSF is often 
used to represent the spatial resolution. It is easy to show 
3y',(x)/x = 0.5 when* = 2.4983. Therefore, 

2.4983 2.4983 
WPWHM=2X-^— = 2X^^—0.7952c//c. *0.8\r 

(55) 

where \c is the wavelength at the cutoff frequency of the 
bandwidth. For example, if c= 1.5 mm/fis, fc=4 MHz, then 
WFWHM^O-3 mm. The corresponding rf,SF(R) is plotted in 
Figs. 2(a) and 2(b). 

Sometimes, a detection system has a finite bandwidth 
characterized by a central frequency f0 with a low cutoff 
frequency/Lc and a high cutoff frequency/Hc. For simplic- 
ity, suppose H(k) =1 is in the above frequency range, and 
then the PSF can be expressed by 

?b
s?(R) = 

*L 7i(*uÄ) 4c Jl(kHcR)  
2TT

2
    kHcR       2 IT2

    kLcR 
(56) 

where k^lTtf^lc and kHc=2irfUc/c. 

For example, a system is with /0=3MHz, and f^. 
= 2 MHz and/Hc=4 MHz. The corresponding PSF is plot- 
ted as the dotted line in Fig. 2(c). As shown in Fig. 2(c), the 
FWHM of the PSF with a bandwidth of (2 MHz, 4 MHz) is 
slightly narrower than the FWHM of the PSF with a wider 
bandwidth of (0, 4 MHz) [solid line in Fig. 2(c)]. In other 
words, due to the absence of a low frequency component, the 
high frequency component will cause the FWHM to be nar- 
rower. The minimum value of the FWHM can be estimated 
in the PSF with a single frequency fc and zero bandwidth. 
The PSF in this case is nothing but the integral kernel in Eq. 
(49): the zero-order spherical Bessel function j0(kcR). Such 
an example, with fc~4 MHz, is plotted as the dash-dot line 
in Fig. 2(c). Since y'0( 1.895)^0.5, the minimum WFWHM 

=*0.6\c, where \c is the wavelength at the cutoff frequency 
fc. But, as shown in Fig. 2(c), a PSF that lacks a low fre- 
quency component does not concentrate in the center beam 
anymore, and the side beams of the PSF slowly attenuate as 
the position gets farther away from the point source, thereby 
introducing significant artifacts in the investigation of large 
objects. 
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*^. ^ 

Detector 
Surface 

FIG. 3. Diagram of the detector surface r' with origin o'. The 
vector r0 represents the center of detector o' in the recording ge- 
ometry with origin o. The vector r'0 points to an element of the 
detector aperture. 

In conclusion, the obtainable spatial resolution approxi- 
mates to a value between 0.6\c and 0.8\c, where \c is the 
wavelength at the high cutoff frequency/,.. If the bandwidth 
is too narrow, the reconstruction based on the wide band- 
width measurement becomes inappropriate and the FWHM 
of the reconstructed PSF does not properly describe the real 
spatial resolution. 

IV. EFFECT OF DETECTOR APERTURE 

Next, let us derive the analytic expressions of the PSF's 
related to detector aperture size. As shown in Fig. 3, the real 
signal detected at position r0 can be expressed as a surface 
integral over the detector aperture 

P" (r0,k) = jj?(r'o, k)W(r')d2 
0> (57) 

where W(r'0) is a weighting factor, which represents the con- 
tribution from different elements of the detector surface to 
the total signal of the detector. 

Since rß = r0+r', Eq. (57) can be rewritten as 

P'(r0,k)= j |p(r0 + r',k)W(r')d2r'. (58) 

One can assume a point source at ra and then get the 
detected signal at position r0 using Eq. (57) or (58). If the 
signal is not bandlimited, by substituting p'(rQ,k) for 
p(r0,k) in the rigorous reconstruction formulas such as Eqs. 
(8)—(10), one can get analytic expressions of the PSF's for 
the spherical, planar, and cylindrical geometries, respec- 
tively. In general, the analytic expressions cannot be thor- 
oughly simplified for arbitrary detector apertures. In order to 
explicitly demonstrate the effects of the detector apertures on 
spatial resolution, we will make some assumptions about the 
detector apertures. 

A. Spherical geometry 

As shown in Fig. 4(a), r0 represents the center of detector 
o' in the global spherical coordinates (r, 0,<p) with the origin 
at the recording geometry center o. A local spherical coordi- 
nate system aligned with r0 is used as well. Assume that the 
detector is circularly symmetric about its center o'; in this 
case, the weighting factor depends only on  6',   W(r') 

PHYSICAL REVIEW E 67, 056605 (2003) 

1"     dl' 

(a) 

(b) 

FIG. 4. (a) Diagram of the spherical recording geometry: 0' is 
the angle between r0 and r'0; dl' is an integral element on the 
detector surface; ® is the angle of the radius of the detector aperture 
to the recording geometry origin o; the extension of the PSF at point 
A is indicated; other denotations of the symbols are the same as in 
Figs. 1 and 3. (b) Perspective view of the lateral extension of the 
PSF's of all the point sources along a radial axis in the spherical 
recording geometry. 

= W(O'), where the angle 0' between I-Q and r0—the polar 
angle of r'0 in the local coordinate system—varies from 0 to 
G depending on the size of the detector. The azimuthal angle 
cp' of TQ in the local coordinate system varies from 0 to 2TT. 

The normal of the detector surface at point o' is assumed to 
point to the center of the recording geometry o. The surface 
integral in Eq. (58) can be transformed into an integral over 
a curve radiating from the center o' on the surface /' and the 
azimuthal angle <p': 

p'(r0,Jc)^j jp(r0 + r',k)W(e')r'Jl-(n0-n')2d<p'dr 

= fw(e')yll-{n0-n')2r'dl' 

X \2"p(r0 + r',k)d<p', (59) 
Jo 

where n' = r'/r' and 
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p(r0 + r\k)=-ikc2veXf?ra~r°~*[l).      (60) Aa(r)= f f W(0')r'yll-(*o-n')2d<p'dl' *">"'' 47rr„-rn-r J  J 

1 
Considering the expansion in the local spherical coordinates, x —_ ^ ^m +1 )Pm(cos y) 
and denoting ni = r£/ri, no=(0'V), and na = (0a,<Pa)> 2w »-o 
one obtains ,, rWn  '\ 

exp(/Ä:|ra-r0|)     iC 

4-7r|ra-r0|        477 ;=o 

XAJ'^tri)^^-^). (61) 

XJo   ^^-^ÄU^*2*'    (66) 

where cos y=cos 0cos 0'4-sin 0sin ff cos(<p-<p'). 

1. Special spherical aperture 

where P,(na- n0) can be expanded as [14] For simplicity, assume that the detector is a small section 
' of the spherical measurement surface, i.e., ro = lrol = lro 

Pl(na-n'0) = P,(cos e'a)P,(cos 0') +r'| = |r0| = r0. Therefore, one obtains 

■'    n-m)i Jl-(n0-n')2r'dl' = r2sm8'd8', (67) 
+ 22 jjT-^PTicosO'.mcose') 

m = \ \i-rm). an(j 

Xcos[m(<p'a-ip')]. (62) h^\kr'0)lh^\kr0)=\. (68) 

Then, one can evaluate the following integral: Substituting the identity Eq. (18) and the following identity 
(see the Appendix) into Eq. (65), 

I2"P^-n^dy' = 2irP,{cos d')P,(cos 8'J.     (63) 
Jo 

Actually, 0'a is the angle between r0 and ra, i.e., cos ffa 

=n«'no- one obtains 
Combining the results of Eqs. (61)-(63), Eq. (59) can be 

rewritten as A 

2 (2m+l)Pm(na-n)Pm(cosO') = 28(cos0'-na-n), 
m = 0 

(69) 

p'(ro,k)=^^jiW(0')Jl-(no-n')2r'dr 

x2 (2l+l)Pl(cos8')Pl(na-n0)jl(kra) 
1 = 0 

Xhy\kr'0). (64) 

By replacing p(r0,k) with p'(r0,k) in the reconstruction r2 wv    'a-^ >""' "i";«"     sin*?' 
formula Eq. (8) and considering identity (14), one obtains the 
reconstruction for^(r): 

Aa(r)=-\ W(0')^l-(no-n')2r'dl' 

rt f@ 

Aa(r)=-$S(r-ra)      sin8' W{8')d0' S(cos0'-na-n). 
r Jo 

(70) 

Letting y be the angle between na and n, i.e., na-n=cos y, 

rl f® 
AJr)=4s(r-ra)      sm8'W(8')d0' S(cos 8'- cos y) 

r Jo 

rl f© S(0'-y) 
= 4s(r-ra)\    sin 8' W{8')d8'- 

rA Jo 

= r4s(r-ra)\   W(8')S(8'-y)S8' 
r Jo 

= 4s(r-ra)W(y). (71) 
r 

X^ (2m+\)Pm(na-n)Pm(cos9') If letting FF(6>')= 1, 
m = 0 

><\+\(krJUkr)h-^k2dk.    (65) Aa(r)= ^S(r-ra)[U(y)-U(y-®)l (12) 
Jo hy

m'{krQ) 

where U is the step function, U(x)=l  when x>0 and 
Letting 0 and ^ be the polar and azimuthal angles of      U(x) = 0 whenjc<0. 

vector n with respect to vector na, and using an identity Equation (72) indicates that, in this special case, the PSF 
similar to the one shown in Eq. (63), one can rewrite Eq. (65)      only extends along the lateral direction, which is propor- 
as tional to the solid angle of the detector aperture to the origin 
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of the measurement geometry. The perspective view of the      Using the relation r'0=^r2
Q + r'2, one can simplify Eq. (77) 

lateral extension of all the points in a radial axis looks like a      to 
cone as shown in Fig. 4(b). The farther the point source is 
away from the origin, the more extension the PSF has. 
Therefore, the lateral resolution is worse when the point is 
close to the detector. But, a lateral resolution superior to the 
aperture size can still be achieved if the object under study is 
close to the center of the geometry. 

2. Small flat aperture 

Now, let us consider flat apertures. Sometimes, a set of 
small flat detectors is used to form a spherical recording 
surface. Suppose the detector aperture is disklike and its ra- 
dius is P. Since n0n' = 0 in this case, 

yll-(n0-n')2r'dl' = r'dr', (73) 

where r' = rotan0'. If the aperture is small relative to the 
radius of the detection surface, i.e., r'*sP<r0, the follow- 
ing approximation holds: 

„'2 

rö-r0=ylr2
0 + r'2-r0~—. (74) 

Neglecting the second-order and higher small quantities, one 
can approximate h^ikr'^lh^ikr^l. Then, one can fol- 
low the derivation for the special spherical aperture and ob- 
tain 

1 fP 
Aa(r)=-S(r-ra)      W(r')r'dr' <5(cos 0'-nfl-n). 

r Jo 
(75) 

Letting W(r')= 1 and approximating r' = r0tan ff***r0 ff for 
the small-aperture case, one reaches 

rl fPiro    S( d' - y) 

ri fPIro 
= -^8{r-ra)\       8(e'-y)S6' 

r Jo 

= -ßS(r-ra)[U(y)-U(y-P/r0)].       (76) 

Equation (76) indicates that, for the small flat aperture, the 
extension of the PSF is primarily along the lateral axis. In 
fact, if we substitute 0 for Plr0, Eq. (76) becomes identical 
to Eq. (72) for the special spherical aperture. 

Particularly, at the center of the recording geometry, i.e., 
ra = 0, we have jm(0)=Sm0, P0(-)=l, and h$\kr) = 
-iexp(ikr)/(kr). Assuming W{r')=\, Eq. (65) reduces to 

1   f+°° 
Aa(r) = —        j0(kr)exp( - ikr0)k

2dk 
TT JO 

X I   ^-r'dr' exp{ikr'0). (77) 
Jo r0 

1   (+< 

T JO 
j0(kr)k2dk 

r0iexp(ikyjP2 + r2
Q-ikr0)-l] 

ik 
(78) 

Because P<rü, the imaginary part is much less than the real 
part and hence can be neglected; as a result, one can obtain 

y f + 00   

Aa(r)~-\     Jo(kr)sm[k(jP2 + r2-r0)]kdk.    (79) 
7T Jo 

Using the following identity [14]: 

/• + » r+» 
j0(ka)sin(kb)kdk=b       j0(ka)jQ(kb)k2dk 

Jo Jo 

TT 
= ^S(b-a), (80) 

in the small-aperture case, i.e., P<r0, Eq. (79) reduces to 

(81) ^<r)!=PY~w- 
Equation (79) indicates that the point source at the center 

becomes a circle with a diameter P2/r0. 
Next, we want to estimate the lateral extension at an ar- 

bitrary point. Taking the asymptotic form of the Hankel func- 
tion to approximate 

h^(kr'0)     exp(i*rS)/(*rj)     r0 

]%\k7ö)~ exp(/tr„)/(itr„)- r',"*'**   ^ 

one can rewrite Eq. (65) as 

1   fP f+mrn 
Aa(r)=-\   W(r')r'dr'\     -iexp(ikr'0-ikr0)k

2dk 
irJo JO    r0 

(82) 

x2 (2m+l)Pm(na-n) 
m = 0 

X P Jcos 6')jm(kra)jm(kr). (83) 

The above integral is still complicated. Here, we consider 
only the spread along r„ with the assumption of W(r') 
= 1. Substituting Pm(na-n) = Pm(l) = \ into Eq. (83) and 
considering identity (16), and further approximating 
j0(k\lrl + r2-2rar cos ö')Rv'o(*lr-rJ) f°r trie small- 
aperture case (r'<r0, i.e., 0'<\), one obtains 

1   f+°° 
Aa(rna)=-        j0(k\r-ra\)exp(- ikr0)k

2dk 
w Jo 

X r^-r'dr' exp(ikr'0). (84) 
Jo r0 
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(a) 

Ta 

A 
(b) 

FIG. 5. (a) Diagram of the planar recording geometry: P is the 
radius of the detector aperture; the extension of the PSF at point A 
is indicated; other denotations of the symbols are the same as in 
Figs. 1 and 3; (b) perspective view of the lateral extension of the 
PSF's of all the point sources along a line parallel to the z axis in 
the planar recording geometry. 

If we substitute \r-ra\ for r, Eq. (84) becomes identical to 
Eq. (77). Thus, in the small-aperture case (P<r0), Eq. (84) 
reduces to Eq. (81) with the replacement of r by |r—rfl|: 

Aa(ma)' <5 \r~r„ 2r0 
(85) 

Equation (85) indicates that the point source at which ra 

extends in the radial direction to a region with diameter 
P2/r0 is the same as the extension of the PSF at the record- 
ing geometry center as shown in Eq. (81). But, in most cases, 
this extension is negligible. For example, when using a trans- 
ducer with even a 6 mm diameter to image a 10-cm-size 
breast on a recording geometry surface with a 15 cm diam- 
eter, P2/r0 = 32/150=0.06mm. However, the lateral exten- 
sion at r is on the order of2rP/r0 as shown in Eq. (76). For 
example, even at r=lcm, 2r/Vr„ = (2)(10)(3)/150 
= 0.4 mm> 0.06 mm. 

B. Planar geometry 

In this case, we reasonably assume that the detector sur- 
face is flat. As shown in Fig. 5(a), r0 represents the center of 
the detector o' in the global Cartesian coordinates (x,yz) 
with the origin at the recording geometry center o. Let JC', 

y', and z' be the differences of the coordinates between r'0 

and r0, respectively. For the following two linear transla- 
tions: 

r0->rö: x0-+x0+x'=x'0,   y0->yo+y'=y'o>   (86) 

ra-*
r«: xa->xa-x'=x'a,   ya^ya-y'=y'a,   (87) 

there exist the following translational invariances, [ra—r0| 

= |r;-r0|. 
The detected signal at r0 can be written as 

p'(r0,k)=j | W(r')p(r0 + r',k)d2r' 

-II W(x',y')p(xQ+x',y0+y',k)dx'dy'. 

(88) 

Using p'(r0,k) to replace p(r0,k) in the reconstruction 
formula Eq. (9), and following the similar derivation shown 
in Sec. IIIB, one gets the reconstruction for A(r) as 

Aa(x,y,z)= j | W(x',y')S(x-x'a)S(y-y'a) 

XS{z-za)dx'dy' 

= j j W(x',y')S(x-xa+x')8(y-ya+y') 

XS(z-za)dx'dy', (89) 

i.e., 

Aa(x,y,z)=W(x-xa,y-ya)S(z-za). (90) 

Assuming that the detector surface is a disk with radius P, 
and W(x',y')=l when ^x'2+y'2<P, Eq. (90) reduces to 

Aa(x,y,z) = U(P-D)S(Az), (91) 

where Z)=V(Ax)2 + (Ay)z, and Ax=x-xa, etc. 
Equation (91) indicates that without considering the band- 

width, the PSF does not extend along the axial direction, but 
it greatly extends in the lateral direction. Moreover, the lat- 
eral extension is proportional to the detector aperture. The 
perspective view of the lateral extension of all the PSF's in a 
line parallel with the z axis looks like a cylinder as shown in 
Fig. 5(b). Therefore, the lateral resolution is totally blurred 
by the detector aperture, no matter where the point is. 

C. Cylindrical geometry 

1. Special cylinder aperture 

We first assume that the detector surface is a section of the 
cylindrical measurement surface. As shown in Fig. 6(a), r0 

represents the center of the detector o' in the global cylin- 
drical coordinates (p,<p,z) with the origin at the recording 
geometry center o. Let cp' be the difference between the 
polar angles of r0 and r^, and p' andz' be the projections of 
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Detector  z 

(b) 

FIG. 6. (a) Diagram of the cylindrical geometry: (p' is the dif- 
ference between the polar angles of r0 and r„; p' and z' are the 
projections of r' in the x-y plane and the z axis, respectively; Z is 
the half width of the detector aperture along the z axis and 3> is the 
half angle of the width of the detector aperture parallel to the x-y 
plane to the center of the recording geometry; the extension of the 
PSF at point A is indicated; other denotations of the symbols are the 
same as in Figs. 1 and 3. (b) Perspective view of the lateral exten- 
sion of the PSF's of all the point sources along a radial axis in the 
cylindrical recording geometry. 

r' in the x-y plane and the z axis, respectively. Two sides of 
the detector are along the z axis from - Z to Z, and the other 
two sides are parallel with the x-y plane and the polar angle 
<p' varies from —$ to <t>. For the following two translations: 

«"o-Ho:  <p0-
><Po+<P' = <PÖ>    Zo >zo+z'=z;,   (92) 

«"«-<:  <pa^cpa-(p' = cp'a,    za-*za-z'=z'a,   (93) 

there exist the following translational invariances, | ra — r01 
— Ir' —r I -\ra     MM- 

The detected signal can be written as 

pa(r0,k) = j j p(rQ + r',k)W(r')d2r' 

= ] ] p{<Po+<P',zo + z',k)W(cp',z')p0d<p'dz'. 

(94) 

Replacingp(r0,k) by p'(r0,k) in the reconstruction for- 
mula Eq. (10), and following the derivation shown in Sec. 
Ill C, one can get the reconstruction for ^4(r) as 

Aa(p,<p,z)=j J -S(p-pa)S(ip-(p'a) 

XS{z-z'a)W(<p',z')Podcp'dz' 

= -8(p-Pa)j j S(<p-<pa+<p') 

XS(z-za+z')W((p',z')d<p'dz',    (95) 

i.e., 

Pn 
Aa(p,<p,z)=jS(p-Pa)W(<p-<pa,z-za).      (96) 

If W(<p',z')=\, <p' from -<D> to *, and z' from -Z to Z, 
Eq. (96) can be rewritten as 

Aa(p,9tz)=j6(p-pa)U(Q-\<p-<pa\)U(Z-\z-za\). 

(97) 

Equation (97) indicates that the extension of the PSF in 
the cylindrical geometry combines the properties of the 
PSF's in the spherical and planar geometries. In this special 
case, the PSF does not extend along the radial direction. The 
perspective view of the lateral extension of all the point 
sources in a radial axis looks like a wedge of pie as shown in 
Fig. 6(b). In the z-axis direction, the PSF extension is pro- 
portional to the detector size along the z axis, just like the 
planar geometry. While parallel with the x-y plane, the lateral 
extension is proportional to the angle of the detector width to 
the z axis, just like in the spherical case. Therefore, a lateral 
resolution that is better than the aperture size can be obtained 
parallel to the x-y plane if the object under study is close to 
the center of the geometry; however, the lateral resolution 
along the z axis is determined by the detector size. 

2. Small rectangle aperture 

Sometimes a set of small rectangle detectors is used to 
form a cylindrical array. The normal of the detector at the 
center point o' is assumed to point to the center of the re- 
cording geometry. Two sides of the detector are along the z 
axis from - Z to Z, and the other two sides are parallel with 
the x-y plane and have a length of 2P. One can follow the 
similar derivation in Sec. Ill C, and get the reconstruction for 
A(r) as 
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Aa(p,<p,z)=^- fZ 8{za-z-z')dz' f dp' W(<p',z') 
27T J -z J-P 

+ 00 
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X   2     exp[z'm(<pa-<p--<p')] 

r + oo 
X        fidjj. 

Jo 

1 f+°° 
Aa(p,<p,z)=—U(Z-\z-za\)\      fidfi 

ZlT Jo 

xj    Jp'exp[i>(Vpo + p'2-Po)] 
-p 

+ 00 

XJmiVPaVmiPP) //('>(„„ ) '      ^ 

where p'=Potan<p'. Let W(<p',z') = 1. 
For the small-aperture case, p'<p0, one can approximate 

tfL'Wo) 
(99) 

X    2     JmiPPaVmiP-P) 
m=-co 

Xexp[/m((pa- <p-<p')]. (104) 

Considering identity (35), Eq. (104) can be rewritten as 

i      ,    , r+°° 
Aa(p,(p,z)= — U{Z-\z-za\)\      pdfi 

ZTT Jo 

Xj    dp'exp[ifi(^lp2
0 + p'2-p0)] 

Further, taking the small-aperture approximation p' 
= p0tan<p'~p0(p', and considering the following identity 
[14]: 

rC°fidfJiJm(fipa)Jm(fip)=-S(p-pa),      (100) 
Jo P 

one can rewrite Eq. (98) as 

Aa(p,<p,z) = U(Z-\z-za\)-8(p-Pa) 

xy0(p;Vpa+p2-2pap cos(<pa-q>-(p')). 

(105) 

Equation (105) is still complicated. Here, by only consid- 
ering the points along ra, i.e., letting <p- <pa, and then tak- 
ing the small-aperture approximation (<p'-41), 

■/o(Wp0 + P2-2papcos((pa-<p-<p')Wo(^lp--pal)> 
(106) 

and 

VPo + P'2-Po~ 
2po' 

(107) 

i.e., 

X Po^<p' S(<pa-<p-(p'),    (101)       one can rewrite Eq. (105) as 
J-PlPo 

rp r+=° 
Aa(p,<pa,z) = U(Z-\z-za\)\    dp'\     fidn 

J -p      Jo 

XJ0(/j.\p-pa\)exV(ifip'2/2p0).   (108) 

Aa(p,<p,z)=^S(p-pa)U\?--\<p-<pa\)u(Z-\z-za\). 
P \Po / 

(102) 

Equation (102) indicates that, for the small flat aperture, the 
extension of the PSF is primarily along the lateral axis. In 
fact, if we substitute $ for P/po, Eq. (102) becomes identi- 
cal to Eq. (97) in the special cylinder aperture case. 

Next, we want to estimate the lateral extension of the PSF. 
One can also take the asymptotic form of the Hankel func- 
tion to approximate 

Because p'<pQ, the imaginary part is much less than the 
real part and hence can be neglected, 

Aa{P,<pa,z) = U{Z-\z-Za\)  fP  dp'   f+    ILdlL 
J-p      Jo 

XJ0{fi\p- pa|)cos(p:p'2/2p0) 

p 

p 
= t/(Z-|z-za|)J   dp 

p'jdp' 

//LVVPFT
2

") 
#L'Wo) 

and then rewrite Eq. (98) as 

exp[!>(Vpo + p'2-po)]>   (103) 
Jo 

X <^uJ0(/i|p-pa|)sin(/ip'2/2p0). 

(109) 

Using the following identity [15]: 
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Displacement from the point source (mm) 

(b) 

FIG. 7. An example of the PSF due to the detector aperture: (a) a gray scale view and (b) a lateral profile through the point source. 

r Jo 
dtJ0(ta)sin{tb)=< 

1 
0<a<b 

0 otherwise, 
(110) 

one can get the integral in Eq. (109), 

/: 

J?*]* 
p      \P I dp 

= (^|[V(p'2/2po)2-|p-pJ^]-1|^ 

■\P_U{p,2i2po)2-\p-PaVrld[^ 

(111) 

The integral of Eq. (Ill) only exists in the range P2/2p0 

>\p-pa\. Therefore, the PSF extends to a region with a 
diameter P2/p0, which is negligible compared to the lateral 
extension as we discussed in the spherical geometry expla- 
nation. 

So far, we have derived the analytic PSF's due to the 
detector apertures for the specific spherical, planar, and cy- 
lindrical recording geometries. The explicit expressions can 
be given when the detector surfaces are assumed to have the 
same geometric properties as the recording geometries. Oth- 
erwise, it appears that explicitly carrying out the analytic 
derivations is impossible. But, in reality, the detector aper- 
ture is very small compared to the recording surface. We 
have also estimated axial extension in this case and found 
that it was negligible compared to lateral extension. 

V. DISCUSSION AND CONCLUSIONS 

In Sec. Ill, we proved that the PSF as a function of band- 
width is space invariant. In Sec. IV, we demonstrated that the 
finite aperture of the detector extends the PSF for different 
recording geometries. 

Finally, we attempt to analyze the combined effects of 
bandwidth and detector size together. Assume that the de- 

tected signal is bandlimited, characterized by H(k) with a 
cutoff frequency kc, and the detectors have the same geom- 
etries as the recording surfaces. One can then follow the 
derivations in Sees. Ill and IV and reach the following re- 
sults. 

(1) Spherical geometry: 

Aba(r)= j j W{e')jfv(R')rlsme'd6'd<f>', 

(112) 

where       R' = ^r2 + r2„ 2 rra cosy,       cos y=cos 0cos 6' 

+sin 6* sin ff cos(^-<p')> and 6 and <p are the polar and azi- 
muthal angles of vector n with respect to vector na, respec- 
tively. 

(2) Planar geometry: 

Aba(x,y,z)=j j W(x,y)jfF(R')dx'dy',   (113) 

where R' = ^{x-xa+x'f + (y-ya+y'Y + {z-zaY. 
(3) Cylindrical geometry: 

Aba(p,cp,z)=j j W(cp',z')^b
s?(R')pod<p'dz', 

(114) 

where R' = ^p2 + p1
a-2ppacos(<p-<pa+<p')+{z-za+z')2. 

Equations (112)—(114) clearly reveal that the PSF can be 
regarded as a convolution of the detector aperture with the 
space invariant J^v. However, in the spherical geometry 
case, the convolution becomes complicated as shown in Eq. 
(112). Further, we can imagine how complicated the convo- 
lution could be with an arbitrary recording geometry using 
arbitrary-aperture detectors. 

Let us take the PSF in the planar geometry case as an 
example, which is shown in Fig. 7. The detector aperture is 
assumed to be a disk with a radius of 1 mm and a cutoff 
frequency/,.=4 MHz. In the axial direction, the extension of 
the PSF is similar to that shown in Fig. 2(b), which is deter- 
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mined by the bandwidth. However, as shown Fig. 7(b), the 
PSF greatly expands in the lateral direction, and its corre- 
sponding WFWHM^

2
 mm, which is physically limited by the 

detector size. 
In conclusion, spatial resolution as a function of band- 

width is space invariant for any recording geometry when the 
reconstruction is linear and exact. The bandwidth limits the 
obtainable spatial resolution. The detector aperture blurs lat- 
eral resolution greatly at different levels for different record- 
ing geometries but the effect on axial resolution is slight. The 
results offer clear instruction for designing appropriate ther- 
moacoustic imaging systems with predefined spatial resolu- 
tions. 
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APPENDIX 

The completeness relation of the spherical harmonics 
Ylm(6,<p) [14,16] is 

CO / 

2    2    Y*m(0',cp')Ylm(6,<p) 
1=0 m=-\ 

= <5(<p-<p')<S(cos0-cos0'), (Al) 

where 

/2/+1 (/-«)! N      ,       x 
Ytm(e,<p)= V-7^77TZT7/,r(cos 0)exp(im<p). 

4ir   (l + m)\ 
(A2) 

Then, do an integral over <p from 0 to 2w of both sides of 
Eq. (Al), 

2 2  2[+1{
(
l~mvP7(cosemcose>) 

1% m=-l     4IT     (/ + !»)!     ' 

T27T 

X        exp[im(<p-(p')~\dcp 
Jo 

CO / 

= 2   2    2[+J {ll+
m^P7{cosd)P7{cose>)2Tr8m0 

„   2/+1 
= 2 —: PI(COSO)PI(COSO')2TT 

1=0      47T 

f2ir 

Jo 
= 8(cos8-cos6') |     S(<p-<p')d<p= <S(cos 9-cos 6'), 

(A3) 

i.e., 

2 (2/+l)P/(cos6>)P/(cos0') = 2(5(cos0-cos0'). 
/=0 

(A4) 
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Time-Domain Reconstruction Algorithms and 
Numerical Simulations for Thermoacoustic 

Tomography in Various Geometries 
Minghua Xu, Yuan Xu, and Lihong V. Wang*, Senior Member, IEEE 

Abstract—-In this paper, we present time-domain reconstruction 
algorithms for the thermoacoustic imaging of biological tissues. 
The algorithm for a spherical measurement configuration has re- 
cently been reported in another paper. Here, we extend the recon- 
struction algorithms to planar and cylindrical measurement con- 
figurations. First, we generalize the rigorous reconstruction for- 
mulas by employing Green's function technique. Then, in order 
to detect small (compared with the measurement geometry) but 
deeply buried objects, we can simplify the formulas when two prac- 
tical conditions exist: 1) that the high-frequency components of the 
thermoacoustic signals contribute more to the spatial resolution 
than the low-frequency ones, and 2) that the detecting distances 
between the thermoacoustic sources and the detecting transducers 
are much greater than the wavelengths of the high-frequency ther- 
moacoustic signals (i.e., those that are useful for imaging). The sim- 
plified formulas are computed with temporal back projections and 
coherent summations over spherical surfaces using certain spa- 
tial weighting factors. We refer to these reconstruction formulas 
as modified back projections. Numerical results are given to illus- 
trate the validity of these algorithms. 

Index Terms—Algorithm, geometry, imaging, photoacoustics, 
reconstruction, thermoacoustics, time-domain, tomography. 

I. INTRODUCTION 

RECENT research has suggested that thermoacoustic 
tomography using either pulsed radio-frequency (RF) 

[l]-[8] or pulsed laser [9]-[12] can be a powerful imaging 
technology with good spatial resolution. Within this technique, 
when a pulsed electromagnetic irradiation is absorbed by a 
tissue, the heating and subsequent expansion of the tissue give 
rise to an instantaneous acoustic stress or pressure distribution 
inside the tissue. Directly following the pulse irradiation, the 
induced pressure distribution prompts acoustic wave propaga- 
tion toward the surface of the tissue with various time delays. 
Ultrasound detectors are placed around the tissue to record the 
outgoing acoustic waves. These detected acoustic waves can be 
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used to inversely compute the distribution of the initial acoustic 
pressure or electromagnetic absorption, which is related to the 
properties of the tissue. 

In fact, electromagnetic fields in the RF range of 300 to 3000 
MHz are the most useful in the study of soft tissues sized in 
centimeters. The RF penetration depth at this frequency range 
varies depending on the tissue properties and the RF frequency 
[3], [13], [14]. For example, the penetration depths for muscle 
and fat are about 1.2 and 9 cm at 3 GHz, respectively, and about 4 
and 30 cm at 300 MHz, respectively; most other soft tissues have 
penetration depths that fall between these values. In addition, in 
this frequency range, there is very little scattering by the tissues 
[13]. 

In a typical application of thermoacoustic imaging using RF, 
a short-pulsed RF field illuminates the tissue. The most inves- 
tigated and documented effect of RF power on biological tis- 
sues is the transformation of energy entering the tissues into 
increased kinetic energy in the absorbing molecules, thereby 
producing a general heating in the medium [13]. The heating 
results from both ionic conduction and vibration of the dipole 
molecules of water and proteins [13]. The energy absorbed by 
the tissue produces a temperature rise that is dependent on the 
cooling mechanism of tissue [13]. Human exposure to RF power 
must be limited for safety reasons, and within the mandated 
safety limits, the temperature rise per short pulse (such as 1 /xs) 
in soft tissue is very small (on the order of milli-degrees) [6]. 

Nevertheless, this small temperature rise causes linear expan- 
sion of the tissue. The heating and expansion are greatest in 
those regions of the tissue that absorb the most RF power. There- 
fore, a distribution of acoustic pressure or stress inside the tissue 
is induced immediately during the short RF-pulse irradiation pe- 
riod due to heterogeneities of the RF energy deposition and the 
Grüneisen parameter inside the inhomogeneous tissue. Thermal 
expansion due to energy deposition is commonly referred to as 
the thermoelastic effect [15]. The generated acoustic pressure 
is on the order of mBar [6]. Such a small value does not cause 
tissue damage. 

Subsequently, after the RF-pulse irradiation, the acoustic 
stresses inside the tissue relax. They act as instantaneous 
acoustic sources inside the tissue, which promote acoustic wave 
propagation. These acoustic waves contain acoustic frequencies 
ranging from very low frequencies to high frequencies that ap- 
proximate the reciprocal of the RF pulse duration. The acoustic 
detectors, called ultrasound transducers [16], which can convert 
mechanical stresses into electrical signals, are placed around 
the tissue to record these outgoing acoustic waves, commonly 
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referred to as thermoacoustic or photoacoustic signals. These 
thermoacoustic signals carry information about the RF absorp- 
tion or initiated stress as well as about the acoustic properties of 
the tissue. Since the RF absorption or initiated stress is directly 
related to certain tissue properties (i.e., ionic conductivity and 
water components, etc.), the key problem is how to reconstruct 
the distribution of the RF absorption or initiated stress from the 
measured thermoacoustic signals around the tissue surface. 

The short duration of the RF pulse allows one to restrict the 
RF energy deposition within the absorbing volume and mini- 
mize the thermal diffusion effect on the thermoacoustic waves. 
In thermoacoustic imaging, the RF pulse duration, TP, is typ- 
ically shorter than the thermal transport time of absorbed RF 
energy in thermal conduction, rth, the condition that is com- 
monly referred to as thermal confinement [17]. The condition 
for thermal confinement can be expressed as TP < rth ~ Ip/ot, 
where a is the thermal diflusivity of the irradiated material and 
lp is the RF penetration depth or the size of the absorbing struc- 
ture. For most soft tissues, a ~ 103 cm2 • s_1 [14]. For ex- 
ample, we are interested in the detection of small absorbers in 
sizes from submillimeters to centimeters inside the tissue. We 
choose lp ~ mm to underestimate the thermal transport time 
rth ~ 10 ßs. The RF pulse used, TP, is typically less than 1 ßs, 
which is much less than rth. Moreover, the time required for an 
acoustic wave to traverse the absorption depth lp approximates 
to ~ lp/c « 0.7 ^s, which is also much shorter than rth, where 
c is the sound speed that is around 1.5 mm//xs in most soft tis- 
sues [14]. In other words, even in 1 ßs of RF pulse duration, 
the heat transports a length of ^/ctTp~ ~ 0.3 mm, while in the 
same amount of time, the acoustic wave propagates a distance 
of CTP ~ 1.5 mm, which is far away from the thermal diffu- 
sion region of 0.3 mm. Of course, thermal diffusion will slightly 
blur the reconstructed images. But, when we try to investigate 
targets that are bigger than the thermal diffusion region, for in- 
stance, > 0.3 mm, if the RF pulse duration is less than 1 fis, the 
thermal effect on the thermoacoustic waves in soft tissue can be 
ignored. In addition, the thermoacoustic signal excited by a RF 
pulse with finite width can be regarded as a convolution with 
the RF pulse profile and the thermoacoustic signal excited by a 
S(t) RF irradiation. For theoretical analysis, the short pulse can 
be regarded as a delta function. 

In general, thermoacoustic imaging can be used for the inves- 
tigation of soft tissues with inhomogeneous RF absorption but 
relatively homogeneous acoustic properties including the speed 
of sound and low acoustic attenuation. For practical purposes, 
speed dispersion can be neglected in soft tissues; typically, the 
speed increases by about 0.01% MHz-1 [16]. In most soft tis- 
sues, the speed of sound is relatively constant at ~ 1.5 mm//is 
with a small variation about 5% [14], [16]. Acoustic attenua- 
tion in soft tissues is primarily due to the spectra of the relax- 
ation processes, which account for the nearly linear frequency 
dependence [16]. The total acoustic attenuation in soft tissues 
results from combined losses due to absorption and scattering 
[14], [16]. In the low megahertz range, acoustic scattering in soft 
tissues accounts for only about 10% of the total acoustic atten- 
uation [14]. A mean value of the acoustic energy attenuation in 
soft tissue is equal to 0.6 dB -cm-1 -MHz-1 [16]. Typically, the 
total energy attenuation for a 1-MHz signal after a 5-cm prop- 

agation is about 3 dB, and the corresponding amplitude atten- 
uates approximately to 70% of the initial value. Such attenua- 
tion is still acceptable, although the spatial resolution will be 
blurred at a certain level due to the loss of the high-frequency 
signal. For simplicity, the acoustic attenuation is neglected here. 
Pure acoustic property differentiation should appeal to conven- 
tional ultrasound imaging [16]. The unique advantage of ther- 
moacoustic imaging is its ability to detect the inhomogeneous 
RF absorption property of tissues when the acoustic property is 
homogeneous. An obvious application is the detection of breast 
cancer tumors. People have observed that tumors in the breast 
have a stronger rate of RF absorption than the surrounding tis- 
sues; by contrast, the ultrasonic contrast in soft tissues is quite 
low [8]. 

In previous papers [2]-[4], the authors have presented 
studies on scanning thermoacoustic tomography using focused 
ultrasonic transducers as in conventional pulse-echo ultrasound 
imaging [16]. Each scan line is converted into a one-dimen- 
sional (1-D) image along the axis of the focused transducer, and 
only a simple calculation is required to construct cross-sectional 
images from all of the scan lines. However, the lateral resolu- 
tion of this approach is determined by the focal diameter of the 
transducer as with conventional ultrasound, and the imaging 
region is also limited to the focal length of the transducer. To 
obtain a larger imaging view, we use unfocused wide-band 
point transducers to record the thermoacoustic signals. In this 
approach, a complicated reconstruction algorithm has to be 
derived for computing the images from a set of data measured 
around the tissue under study. Different recording geometric 
configurations result in different reconstruction formulas. 

The puzzle of finding good reconstruction algorithms has not 
yet been resolved. Some researchers have resorted to approxi- 
mated reconstruction algorithms, such as the Radon transform in 
the far-field approximation [7], [9], the weighted delay-and-sum 
method with experiential weighting factors [10], or the optimal 
statistical approach [18]. To date, some rigorous reconstruction 
algorithms have been reported for idealized measurement con- 
figurations, such as for the fully enclosing spherical recording 
surface [5], the planar recording surface of an infinite extent 
[19], [20] and the cylindrical recording surface of an infinite 
length [21]. However, in practical applications, the recording 
surfaces are generally finite and partially enclosing. 

In this paper, we will first discuss the inverse problem of ther- 
moacoustic imaging. Then, by employing the Green's function 
technique, we will generalize the rigorous reconstruction for- 
mulas for three types of recording surfaces: a planar, a spherical, 
and a cylindrical surface, which enclose the sample under study. 
In order to detect small but relatively deeply buried targets, we 
will introduce the following two conditions (details given in 
Section II): the high-frequency components of thermoacoustic 
signals contribute more to spatial resolution than the low-fre- 
quency ones, and the detecting distances between the thermoa- 
coustic sources and the detecting transducers are much larger 
than the wavelengths of the high-frequency thermoacoustic sig- 
nals that are useful for imaging. Taking these conditions into 
account, we will simplify the rigorous formulas and present 
time-domain reconstruction algorithms, which can be computed 
by temporal back projections and coherent summations over 
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spherical surfaces with certain spatial weighting factors. Finally, 
numerical experiments will be conducted to demonstrate the va- 
lidity of these formulas. 

II. INVERSE PROBLEM 

As discussed in Section I, in typical thermoacoustic measure- 
ments, the RF pulse duration is so short that the thermal conduc- 
tion time is far greater than the thermoacoustic transit time and 
the effect of thermal diffusion on the thermoacoustic wave in the 
tissue can be ignored. We focus on small-amplitude thermoa- 
coustic propagation using safe levels of RF irradiation. Thus, the 
inverse problem that we want to solve is a linear acoustic-wave 
equation. 

The pressure p(r, t) at position r and time t in an acousti- 
cally homogeneous medium in response to a heat source H(r, t) 
obeys the following equation [5], [23]: 

VMr,t)-±^p(r,t) = -ß d 
Cpdt 

H(r,t) (1) 

where Cp is the specific heat, .ff(r, t) is the heating function 
defined as the thermal energy deposited by the energy source per 
time and volume, ß is the isobaric volume expansion coefficient, 
and c is the speed of sound. The heating function can be written 
as the product of a spatial absorption function and a temporal 
illumination function of the RF source 

H(r,t) = A(r)I(t). (2) 

As discussed in Section I, the short RF pulse can be regarded as 
a Dirac delta function 

/(*) = 6(t). (3) 

Substituting (2) and (3) into (1) and taking the Fourier transform 
on variable t = ct of (1), one gets 

(V2 + k2)p(r, k) = ikc2r)A{T) (4) 

where r] = ß/Cp, and the following Fourier transform pair ex- 
ists: 

+oo 

p(r, k) =       p{y, t) exp(ikt)dt, (5) 

—oo 
+oo 

p(r,f)=—   / p(r, k) exp(—ikt)dk (6) 
2TT J 

—oo 

where the acoustic wave number k — w/c and w is the an- 
gular frequency and equal to 2TT/; and p(r, k) is the frequency 
spectrum of the thermoacoustic signal p(r,i). Equation (4) is 
a nonhomogeneous Helmholtz equation. Assume that the ther- 
moacoustic signals are measured on a surface So that encloses 
the sample under study, the frequency spectrum of the thermoa- 
coustic pressure measured at the position ro on surface SQ can 
be expressed as [22] 

p(r0, k) = -ikc2
V J J J d3rA(v)Gk(v, r0)        (7) 

where Gk (r, r0) is the Green's function of the nonhomogeneous 
equation 

(V2 + fc2)Gfc(r,ro) = -£(r-ro). (8) 

In general, Green's function in three dimensions can be written 
as [22] 

Gfc(r,r0) = 
exp(»fc|r-r0|) 

47r|r-r0| 
(9) 

Now, the inverse problem is to reconstruct the absorption dis- 
tribution A(T) from a set of data p(r0, t) or p(r0, k) measured 
at position r0. Equation (7) shows a linear mapping connecting 
A(T) and p(ro, k). The solution of A(r) can be expected in a 
similar form—a linear integral 

*(*) = 
//"*/ 

dkp(T0,k)Kk(T0,r) (10) 

where dSo = d?r0, So is the total recording surface, and the 
integral kernel Kk{ro, r) needs to be determined. As shown in 
Section III, the integral kernel is complicated. But under most 
practical conditions, as discussed below, it can be simplified to 
a linear relation with the Green's function. 

The greatest challenge is to detect small (compared with mea- 
surement geometry) but deeply buried targets inside the tissue. 
Let us check the property of the frequency spectrum of acoustic 
waves generated from a small object. Assume there is a homo- 
geneous RF absorption sphere with a size of 2a in diameter, i.e., 
the spatial absorption function A(r) = U(a - r), where the step 
function U(0 = 1, £ > 0 and Ufä = 0, f < 0. With a 6(t) RF 
illumination, the radiated acoustic wave from this sphere can 
be expressed as p(r,i) = i]c2U{a - \r - ct\)(r - ct)/(2r) 
[23]. Applying the Fourier transform gives the frequency spec- 
trum ~ ji(ka), where ji(ka) is the spherical Bessel function 
of the first kind. The main beam of the above spectrum is in a 
belly shape with maximum amplitude at the central frequency 
fc « 0.7e/(2a). For example, for an object with a size of 1 
mm, fc = 0.7 x 1.5 (mm//xs)/(l mm) « 1 MHz. Below 
100 KHz, the spectrum amplitude is less than 0.1 of the max- 
imum value, and particularly at 0 Hz, the spectrum amplitude 
is zero, which can be proved using (7) letting k — 0. In gen- 
eral, the frequency spectrum of acoustic waves generated from 
a small object concentrates in the relatively high-frequency re- 
gion. The dominating frequency or central frequency /c can be 
approximated by the reciprocal of the required time T for an 
acoustic wave to traverse the object length /, i.e., fc as 1/r = 
c/l. In addition, the boundaries of large objects can also be re- 
garded as small structures, which are also determined by rel- 
atively high-frequency signals. In other words, only the rela- 
tively high-frequency thermoacoustic signals can restore small 
absorbers as well as the boundaries of big absorbers. 

During measurement, the transducer for ultrasonic imaging 
[16] can be employed to receive thermoacoustic signals. The 
ideal transducer for receiving ultrasound would have a wide dy- 
namic range and a wide frequency response. Most commonly, 
transducers are operated over a band of frequencies containing 
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a resonant frequency, which is determined by the physical prop- 
erty of the transducer [16]. A transducer with a resonant or cen- 
tral frequency of 1-3 MHz could be perfectly matched to mil- 
limeter-sized small absorbers in soft tissues. The real-time lo- 
calization of targets should employ transducer arrays, in which 
all of the small elements serve independent ultrasound detec- 
tors and simultaneously receive thermoacoustic signals at dif- 
ferent positions around the investigated tissue [16]. Currently, 
a linear or circular array with hundreds of small elements, in 
which each element has a size of ~sub-mm with a total length 
of perhaps ~10 cm, is available on the market or can be cus- 
tomized and manufactured in a research lab [16]. In addition, 
the measurement geometry is relatively big compared with the 
small targets. For example, when using a spherical measurement 
configuration with a radius ro = 5 cm, even at / = 100 KHz, 
kr0 « 20 > 1. In another example, for a target inside a tissue 
with a distance to the nearest detection element d = 1 cm, at 
/ = 1 MHz, kd « 40 > 1 and even at / = 100 KHz, 
kd « 4 > 1. 

Therefore, for practical applications, we introduce the fol- 
lowing two conditions: the high-frequency components of the 
thermoacoustic signals contribute more to the spatial resolution 
than the low-frequency ones, and the detecting distances be- 
tween the thermoacoustic sources and the detecting transducers 
are much larger than the wavelengths of the high-frequency ther- 
moacoustic signals. Taking these conditions into account, we 
will simplify the rigorous formulas and present time-domain re- 
construction algorithms in the following sections. 

III. RECONSTRUCTION FORMULAS 

A. Planar Measurement Configuration 

The Cartesian coordinate system r = (a;, y, z) suits this situ- 
ation. As shown in Fig. 1(a), we assume that the measurement 
surface is the z = 0 plane, i.e., ro = (x0,y0,0). The sample 
lies above the plane, i.e., A(r) = A(x, y, z) where z > 0 and 
A(r) = 0 when z < 0. Taking Fourier transforms on both sides 
of (8) on variables x, y and z, it can be shown that the Green's 
function is a triple Fourier integral [22] 

(2TT)
3 

exp[iKx(x0 

dKxdKvdKz 

■ x) + iKy(y0 -y)- iKzz) 
(11) K2 + K2 + Kj - k2 

Considering the above expansion, and referencing the mathe- 
matical techniques in Norton's work on ultrasonic reflectivity 
imaging [24], we can derive a rigorous reconstruction formula 
in the form of (10) as (see Appendix A) 

+oo +oo 

A(x,y,z)= dx0dy0   / dkp(x0,yo,k)Kk(T0,r)    (12) 

(a) 

(b) 
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r0 
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(ro, 6o, <po) 

Fig. 1. Diagram of the measurement: (a) planar measurement configuration, 
(b) cylindrical measurement configuration, and (c) spherical measurement 
configuration. 

with 
p=\k\ 

^„.„-^//«.^[-tart*)^^ 
p=0 

• exp[iu(x0-x)+iv(y0-y)] (13) 

where p = V«2 + v2, and the sign function: sgn(fc) = 1 if 
k > 0, and sgn(fc) = -1 if k < 0. 

Under the condition |fc||r - r0| > 1, which means that the 
detecting distances between the thermoacoustic sources and the 
detecting transducers are much greater than the wavelengths of 
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the thermoacoustic signals that are useful for imaging, (13) re- 
duces to (see Appendix A) 

where dS0 = pod<podz0, and 

Kk(r0,r) 
ilk 

ITC
2

T] |r — ro| 
Gt(r,vo) (14) 

Kk(r0,r) = 

where "*" stands for the complex conjugate. 
It can be shown that n • no = z/\r - r0|, where n and n0 are 

unit vectors pointing along the z axis and along the line joining 
r and r0, respectively. Substituting (14) into (12), we get 

2TT
3

C- 

+oo 

— [ "2VPo J 
d-y exp [17(20 - z)] 

exp [m^o - <p)] -jij- ^  ■ 
=-00 Hn' (pWk   -T) 

(19) 

Under the conditions introduced in Section II, i.e., pok » 1, 
(19) approximates to (see Appendix B) 

+00 
f f f       ilk ~ ~ 

;4(r) =        dS0   / dk—^piro, k)G*k(r, r0)[n • n0] Kk(r0,r) 

So -00 
+00 

= ~^~ jjdS(,'h I dfc(-^)^r°'fc) 

i2k 
■KC2r) 

1- 
(zo 
|r-r0| 

-Gl(r,r0). (20) 

So 

exp(-ifc|r-r0|), , 
x 1      '    I L[n-n0] 

|r - r0 

Adding the complex conjugate of (18) onto itself and then 
dividing the summation by two, and further considering 
p*(r0, k) = p(r0, -k) and the approximation (20), one gets 

(15) 

where dS0 = dx0dy0. Recalling the inverse Fourier transform 
of (6), (15) reduces to 

+00 

A(p,ip,z)=       dS0   / dk-^—p(r0,k) 

So —oo 

exp(-ifc|r-r0|)   /      (zp-z 

A(r) = 1- ffdSo[n- 
c4V J J 

n0. 
1 dp{r0,t) 
t at ,_|r0-r| 

(16) 
47r|r—ro 

1 

|r-r0|
2 

2irc2r) 
This is a modified back projection formula of quantity 
-(l/t)(dp(r0,t)/dt) with a weighting factor [n • n0]. The 
required condition is |fc||r — r0| >> 1. 

B. Cylindrical Measurement Configuration 

In this case, a circular cylindrical coordinate system r = 
(p, cp, z) is convenient. As shown in Fig. 1(b), we assume that 
the measurement surface is a circular cylindrical surface r0 = 
(po, <po,zo). The sample (of a finite size) lies inside the cylinder. 
The Green's function can be expressed in the cylindrical coor- 
dinates (k > 0) (see Appendix B for detail) 

+00 

So 

(z0-z) 

2TT 
(—ik)dkp(ro,k) 

r-r0r 

exp(-ifc|r-r0|) 
|r-r0| 

(21) 

It can be shown that 

nn0 = i/>- Pol 
|r - r0| 

\P2 + Po~ 2PPOcos((po - ip) 
|r-r0|

2 

Gk(r, r0) = —-j   ]T   exp [*m^ ~ fo)] 
(zo ~ zf 

(!• 
|r-r0|

2 (22) 

m=—00 
+00 

/ 
dkz exp [ikz(z - z0)] gmk{p, Po, kz)    (17) 

where if k2 < k2, gmk(p,Po,kz) = («7r/2)Jm(/ip)^1)(/ip0) 
with p = y/k2 - k2; if k\ > k2, gmk(p,Po,kz) = 
Im(-ip,p)Km(-ißPo) with \i = i^k2 - k2. Jm(-), #m (•)> 
7m(-) and Km{-) are the Bessel function of the first kind, the 
Hankel function of the first kind, the modified Bessel function 
of the first kind, and the modified Bessel function of the second 
kind, respectively. 

After some deduction (see Appendix B), we get the recon- 
struction formula in the form of (10) as 

-{-00 

A(p,ip,z)= 11dS0   f dkp{r0,k)Kk{r0,r)        (18) 

where p and p0 are the projections of r and r0 on z plane, re- 
spectively, and n and no are unit vectors pointing along the line 
joining p and p0 and along the line joining r and r0, respec- 
tively. Recalling the inverse transformation (6), we can rewrite 
(21) as 

1 dp(r0,t) 
A{p' *'Z) = ~ 2^ // dSo [n'no] I at 

(23) 
This is a modified back projection formula of quantity 
-(l/t)(dp(r0,t)/dt) with a weighting factor [n • n0]. The 
required condition is po|fc| > 1 and |fc||r - r0| > 1. 

C. Spherical Measurement Configuration 

This instance has been reported in another paper [5]. As a 
consequence, we only briefly review the results here for com- 
pleteness. 
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We use the spherical polar coordinate system r = (r, 6, tp). 
As shown in Fig. 1(c), we assume that the recording surface is 
a spherical surface r0 = (r0,80, <po). The sample lies inside the 
sphere, i.e., A(r) = A(r, 6, ip) where r < r0 and A(r) = 0 
when r > r0. The Green's function can be expanded as a series 
based on the spherical Bessel function of the first kind ji(-), 
the spherical Hankel function of the first kind hi(-), and the 
Legendre polynomial Pi(-) 

Gk(r,r-o) = f- £(2/ + 1)JKkfOft^MPKn • no), (k>0) 

(24) 
where n = r/r, and n0 = ro/r0. 

We find the rigorous reconstruction formula as 
+00 

A(r,6,<p)=  ffdSo   f dkp(r0,k)Kk{r0,r) (25) 

So 0 

where dS0 = rQsm60d80dipo, and 

™ c Wo m=0      h>m'{krG) 
(26) 

Under the condition kr0 > 1, one can approximate 
~ ilk   ~ 
^fc(ro,r)«-VGJ(r,ro). (27) 

Adding the complex conjugate of (25) onto itself and then 
dividing the summation by two, and further considering 
p*(r0, k) — p(r0, -k) and the approximation (27), we get 

27TC277 , 

+oo 

•—   / dkp(r0,k)(-ik) 
exp(-«A;|ro - if 

•    (28) 

Recalling the inverse Fourier transform (6), (28) reduces to 

A(r,e,<p) 
2irc4r] JI 

So 

dS, 
1 dp(r0,t) 

m ;[-o-i 
(29) 

Equation (29) shows that the absorption distribution can 
be calculated by means of back projection of the quantity 
-(l/i)(öp(r0, t)/dt). The required condition is |fc|r0 > 1. 

As expected, all of the reconstruction formulas—(16) for the 
planar measurement configuration, (23) for the cylindrical mea- 
surement configuration, and (29) for the spherical measurement 
configuration—can be carried out in the time domain. They 
share a similar expression, except for the weighting factor [n • 
n0]. These formulas can be referred to as modified back-pro- 
jections. Compared with (16), (23) and (29) have an additional 
factor 1/2. This is because the planar measurement configura- 
tion can cover a solid angle of up to 27r only while the other two 
configurations can cover a full Air solid angle. 

IV. NUMERICAL EXPERIMENTS 

Now we want to conduct some numerical experiments to 
demonstrate the validity of the above time-domain reconstruc- 
tion formulas for thermoacoustic imaging. 
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Fig. 2.   Original sample, (a) Cross-sectional image, (b) Profile along the 
horizontal center line. 

We consider uniform spherical absorbers surrounded by a 
nonabsorbing background medium. For convenience, we use the 
centers of the absorbers to denote their positions. The uniform 
spherical absorber can be written as A(r) = AoU(a — |r — ra|), 
where A0 is the absorption intensity, and a and ra are the radius 
and the center of the sphere, respectively. As shown in Fig. 2(a), 
assume a sample contains five spherical absorbers with different 
absorption intensities and the centers of these spheres lie in a 
line parallel to the x axis. For convenience, we call this line the 
horizontal center line. As shown in Fig. 2(b), from the smallest 
to the biggest, the radii are 0.5,1,2,4, and 12 mm, respectively, 
and the relative absorption intensities are 1, 1, 0.75, 0.5, and 
0.2, respectively. We also assume that the RF pulse duration is 
very short and can be regarded as a delta function, and, conse- 
quently, that the thermoacoustic signal p(r0, t) irradiated from 
a uniform sphere can be calculated by rjc2U(a — \R — ct\)(R — 
ct)l(2R), where R is the distance between the detection posi- 
tion r0 and the absorber center ra(R = |ro - ra|) [23]. The 
quantity 9p(r0, t)/dt in the reconstruction formulas (16), (23), 
and (29) can be calculated through the Fourier transform 

dp{r0,t) 
dt 

: IFFT {-»wp(ro,ü;)Wn(w)} (30) 
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where IFFT denotes the inverse fast Fourier transform, WQ(W) 

is a window function, and the Fourier transform defines 

•(w)=   I •(t)exp(iu>t)dt. (31) 

—oo 

As we discussed in [6], the factor u in (30) actually represents 
a pure ramp filter, which will significantly depress the low-fre- 
quency signal. It is helpful for guaranteeing the validity of the 
reconstruction (16), (23), and (29). It also indicates that the rela- 
tively high-frequency component of the signals play the primary 
role in the restoration of the RF absorption distribution inside 
the tissue. But, the ramp filter can also amplify the high-fre- 
quency noise in such a way that the reconstructed image is not 
acceptable from the physical point of view. In order to avoid 
this effect, it is necessary to introduce a relatively low-pass filter 
WQ(LJ) characterized by a cutoff angular frequency ft = 27r/n. 
A Harming window is our choice in this case 

i.5+ 0.5 cos (TT^),   ifM<ft, 
otherwise. WQ{ \     /0£ 

(32) 

In addition, WQ(LJ) also reflects the limited bandwidth of the 
detected thermoacoustic signals that is due to the finite band- 
width of the detector. We assume the thermoacoustic waves to 
be in a frequency range below 4 MHz, and choose fa = 4 MHz; 
then the dominative frequency in CJWQ (UJ) is 1.7 MHz. Here, the 
data sampling frequency is 20 MHz. 

A. Planar Measurement Configuration 

We use the planar measurement configuration as shown in 
Fig. 1(a). Assume that the measurement area is 120 mm x 120 
mm in the z = 0 plane and that the thermoacoustic signals are 
collected at 3600 total detection positions that are evenly dis- 
tributed in the measurement area. Such a measurement can be 
realized by using a rectangular ultrasonic array or by scanning 
a linear array or even by scanning a single detector to cover the 
measurement area. The center of the measurement area is (0, 
0, 0). The sample center (0, 0, 30) lies 30 mm above the mea- 
surement area. Fig. 3(a) shows the reconstructed RF absorption 
distribution of the z = 30 mm plane, and Fig. 3(b) shows the 
comparison of the original and reconstructed absorption profiles 
along the horizontal center line. 

B. Cylindrical Measurement Configuration 

We employ the cylindrical measurement configuration 
as shown in Fig. 1(b). Assume the measurement area is a 
cylindrical surface with a length of 90 mm and a radius of 50 
mm. One can use a linear ultrasound array, which is vertically 
placed and has 30 elements evenly distributed a length of 90 
mm, to horizontally scan the sample, with a step size of 3° to 
cover the measurement area. One can also vertically scan a 
circular ultrasound array with a step size of 3 mm, where the 
circular array may have 120 elements evenly distributed in the 
array. In these ways, the measurement covers 3600 detection 
positions, which are approximately evenly distributed in the 
measurement area. The sample center lies at (0,0,0), the center 
of the measurement cylindrical surface. Fig. 4(a) shows the 
reconstructed RF absorption distribution in the z  =  0 mm 

•• 
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Fig. 3. Reconstructed image from planar measurement configuration using 
3600 detector positions with high cutoff frequency 4 MHz. (a) Cross-sectional 
image at the z = 30 mm plane, (b) Comparison of the original and 
reconstructed absorption profiles along the horizontal center line. 

plane and Fig. 4(b) shows the comparison of the original and 
reconstructed absorption profiles along the horizontal center 
line. 

C. Spherical Measurement Configuration 

Fig. 1(c) shows the spherical measurement configuration. To 
simulate a practical condition, we adopt only a half-spherical 
measurement area in the upper half space (z > 0). Suppose a 
quarter circular array has 30 elements and the radius of the array 
is 50 mm. Then one can rotationally scan the array along its ra- 
dius with a step size of 3° to cover a half spherical measurement 
area. In this way, the, the measurement contains 3600 detec- 
tion positions, which are approximately evenly distributed in the 
measurement area. The sample center lies (0, 0,12 mm) inside 
the measurement surface. Fig. 5(a) shows the reconstructed RF 
absorption distribution of the z = 12 mm plane, and Fig. 5(b) 
shows the comparison of the original and reconstructed absorp- 
tion profiles along the horizontal center line. 

The above examples demonstrate the performance of the 
time-domain formulas for different measurement configura- 
tions. The reconstructed profiles are in good agreement with 
the original distributions. As mentioned before, with a cutoff 
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Fig. 4. Reconstructed image from cylindrical configuration using 3600 
detector positions with high cutoff frequency 4 MHz. (a) Cross-sectional image 
at the z = 0 mm plane, (b) Comparison of the original and reconstructed 
absorption profiles along the horizontal center line. 

Fig. 5. Reconstructed image from spherical measurement configuration using 
3600 detector positions with high cutoff frequency 4 MHz. (a) Cross-sectional 
image at the z = 12 mm plane, (b) Comparison of the original and 
reconstructed absorption profiles along the horizontal center line. 

frequency fa = 4 MHz, the dominative frequency in WWQ(UJ) 

is 1.7 MHz, which corresponds to an acoustic wavelength of 
0.9 mm. That explains why the small absorbers, as well as the 
boundaries of the big absorbers, can be faithfully reconstructed. 
As predicted, the flat bases of the big absorbers are not faith- 
fully recovered, which results from the approximations of the 
algorithms. 

However, in the absence of a high-frequency signal, the small 
size structure will be lost. For example, if the cutoff frequency 
/n = 1.5 MHz, the dominative frequency in CJWQ(OJ) is about 
0.6 MHz, which corresponds to an acoustic wavelength of 2.5 
mm. Without loss of generality, we will take the spherical mea- 
surement configuration as an example. The other parameters in 
the numerical experiment are the same as the example shown in 
Fig. 5. As shown in Fig. 6, not only is the small absorber nearly 
corrupted, but also the originally sharp borders of the big ab- 
sorbers are greatly degraded. 

Only a small number of detector positions affect the recon- 
structed images. We will again take the spherical measurement 
configuration as an example. Suppose a quarter circular array 
has only eight elements and the radius of the array is 50 mm. 

One must rotationally scan the array along its radius with a step 
size of 11.25° to cover a half spherical measurement area. The 
other parameters in the numerical experiment are the same as 
in the example shown in Fig. 5. In this way, the measurement 
has only 256 detection positions. As shown in Fig. 7, the main 
structure of the sample is recovered in the reconstructed image, 
but a lot of noisy artifacts occur. 

In addition, the signal-to-noise ratio (SNR) should be care- 
fully considered in thermoacoustic imaging, since the ampli- 
tude of the thermoacoustic signal is small as was mentioned 
in Section I. In general, white noise can be suppressed by av- 
eraging over many identical data acquisitions. Denoising can 
also be accomplished with more elaborate methods including 
Fourier-based filtering and wavelet-based filtering [25]. Fortu- 
nately, reconstruction in thermoacoustic imaging is a linear ad- 
dition process as shown in (16), (23), and (29). The white noise 
in each detector is independent of every other. If there are n de- 
tectors, the SNR in the image will be improved by the square 
root of n times through summation of the data. Of course, more 
detectors and more data acquisitions will increase the cost of the 
data acquisition time as well as the detection equipment. Actu- 
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Fig. 6. Reconstructed image from spherical measurement configuration 
using 3600 detector positions with high cutoff frequency 1.5 MHz. (a) 
Cross-sectional image at the z = 12 mm plane, (b) Comparison of the original 
and reconstructed absorption profiles along the horizontal center line. 
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Fig. 7. Reconstructed image from spherical measurement configuration using 
256 detector positions with high cutoff frequency 4 MHz. (a) Cross-sectional 
image at the z = 12 mm plane, (b) Comparison of the original and 
reconstructed absorption profiles along the horizontal center line. 

ally, as with other imaging modalities, such as magnetic reso- 
nance imaging, there is a tradeoff between SNR and the cost of 
data acquisition time and equipment. 

In the above simulations, we consider the point-detectors. In 
fact, a finite detector area will limit the lateral spatial resolution 
and affect the axial resolution slightly [6]. A complete analyt- 
ical explanation of spatial resolution related to bandwidth and 
detector aperture size will be reported in another paper [26]. 

V. PRACTICAL APPLICATIONS 

The time-domain reconstruction formulas—termed modified 
back projections—can be derived under the practical conditions 
discussed above. We have shown that modified back projec- 
tion formulas closely approximate the rigorous formulas under 
the above conditions. Unlike the filtered back projection algo- 
rithm used in X-ray tomography, which uses the surface inte- 
gration over intersecting planes, the modified formulas in our 
problems are calculated through temporal back projection and 
coherent summation over spherical surfaces with certain spatial 
weighting factors. Fortunately, due to the advantage of coherent 
summation, these formulas are still applicable to practical con- 

ditions with a finite extension or partial enclosure even though 
they are derived from idealized recording surfaces. Of course, 
finite recording surfaces only provide limited spatial views, but 
that is adequate in practical applications. 

The planar, spherical, and cylindrical recording surfaces 
may cover most measurement configurations. Among them the 
planar measurement geometry may be the easiest to implement. 
A two-dimensional (2-D) planar ultrasonic transducer array can 
be used to detect the thermoacoustic signals as in conventional 
ultrasound imaging. For example, Hoelen et al. [10] used this 
kind of recording geometry in their photoacoustic imaging. 
They adopted a delay-and-sum algorithm with experiential 
weighting factors, which worked well in dealing with their ex- 
perimental data. Our research shows that the spatial weighting 
factor [n, n0] does exist in the back projection formula of (16) 
for the planar recording configuration. This is an interesting 
result in our theoretical analysis, which indicates that (16) 
should be a more accurate form than the one used by Hoelen 
et al.. 

The spherical recording configuration may be more suitable 
for external organ imaging such as breast cancer detection where 
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in practice, only a semispherical measurement surface can be 
implemented. For example, Kruger et al. employed this kind 
of measurement geometry [7]. In their experimental system, 
multiple discrete transducers were mounted on a hemispher- 
ical bowl and could scan nearly a 27r solid angle surrounding 
the breast volume. In the data processing, they assumed that the 
size of a typical absorbing object was much smaller than the de- 
tecting distance, and that the spherical surface, on which the sur- 
face integral was computed, approximated a plane. Therefore, 
the inverse Radon transform was approximately used to recon- 
struct the image as in X-ray tomography. Obviously, the above 
far-field condition is not strict, especially when the absorption 
source is far away from the center of the spherical geometry and 
results in reconstruction artifacts. Our theoretical analysis gives 
a more reasonable reconstruction formula (29), which can im- 
prove the quality of the reconstructed images. 

The cylindrical recording configuration partially combines 
the properties of planar geometry and of spherical geometry. 
The reconstruction formula (23) shows a spatial weighting 
factor [n,n0] < 1, which is dependent on \z — zü\. The 
weighting factor reaches the maximum value [n, n0] = 1 at 
z = zo, which indicates that the cross-sectional image of any 
zo plane is primarily determined by the data measured on the 
circle of the same plane. For example, if some small strong 
absorption sources at a size of several millimeters lie on the zo 
plane inside a weak absorption background at a size of several 
centimeters in diameter, a set of circular measurement data 
detected on a circle with a radius of several centimeters on the 
zo plane would be sufficient to yield a good cross-sectional 
image. In our initial work [5], [6], we used this kind of circular 
measurement to investigate some phantom samples and the 
reconstructed images agreed with the samples very well. But, 
if there are other absorbers outside the z0 plane, the thermoa- 
coustic signals from these absorbers also reach the detectors 
in the z0 plane. Thus, a set of circular measurement data on 
the zo plane only could not distinguish between the absorbers 
on or outside of the plane. In this case, three-dimensional 
measurement and reconstruction must be used. 

In fact, the choice of measurement configuration depends on 
the practical needs. From the physical point of view, these recon- 
struction formulas, (16), (23), and (29) for planar, cylindrical, 
and spherical configurations, respectively, are the same, except 
that the spatial weighting factors resulted from the measurement 
geometries. In addition, the weighting factors in the above equa- 
tions are obtained through first-order approximations. In prin- 
ciple, high-order approximations can be derived. 

Finally, it has to be pointed out that an inhomogeneous 
acoustic property, such as the speed of sound variation, might 
blur the reconstructed images. The experiments as shown in [5] 
and [6] demonstrated that the small speed variations between 
fat and muscle or gelatin did not result in significant recon- 
struction artifacts. The reason is that thermoacoustic waves 
are produced internally by RF absorption and are propagated 
one-way to the detectors. Thus, a small speed variation does not 
affect the travel time of the sound very much in a finite-length 
path, for example, 10 cm, which is a typical breast diameter. 
Therefore, in thermoacoustic tomography, satisfactory contrast 

and resolution are obtainable even in tissue with a small degree 
of acoustic inhomogeneity 

VI. CONCLUSION 

In this paper, we have presented time-domain reconstruction 
algorithms for the thermoacoustic imaging of biological tissues. 
They are computed through temporal back projections and co- 
herent summations over spherical surfaces with certain spatial 
weighting factors. Numerical experiments have demonstrated 
the validity of their applications. These formulas (or high-order 
approximations of the rigorous reconstruction formulas) can 
serve as the basis for time-domain thermoacoustic or photoa- 
coustic imaging in biological tissues. 

APPENDIX A 

The delta function can be written in the Cartesian coordinates 
as 

8(r - r0) = S(x - x0)S(y - yo)S(z). (Al) 

Taking Fourier transforms on both sides of (8) on variables x, 
y, and z, it can be shown that the Green's function is a triple 
Fourier integral of (11). If the recording surface S0 is infinite, we 
may take 2-D Fourier transforms on xo and t/o of p(xo, yo,k), 
i.e., multiplying both sides of (7) by exp(wrc0 + ivy0) and in- 
tegrating with respect to x0 and i/o from -oo to +oo, one gets 

+oo 

/ / dx0dyo exp(iux0 + ivy0)p(x0, y0, k) 

~ikc 71    f f f 
I dz I I dxdyA(x, y, z) exp(iux + ivy) 

2TC 

+oo 
exp(—iKzz) 
K2 + p2- k2 (A2) 

where p = y/u2 + v2, (p > 0). 
The integral of the far right of (A2) can be computed by the 

contour integration (z > 0), because there will always be some 
damping of the wave in a physical system [22], [24] 

+oo 

/ 
dK2 

exp(—iKzz) 
K2 + p2- k2 

exp izsgn(fc)-y/fc2-p2 

\k\ -> n ^_en(/.j       ^k2_p2 i     \K\ > P 

exp\—zyfp2—k2 

—7T L   ,                      , \k\<P 
(A3) 

where sgn(fc) = 1 for k > 0 and sgn(fc) = —1 for k < 0. 
Here, we use the values of k for |A;| > p to do the reconstruc- 

tion. Those of k for \k\ < p correspond to evanescent waves and 
will have no contribution to the reconstruction. 
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In the case \k\ > p and z > 0, (A2) becomes 
+00 

/ / dx0dy0exp(iux0 + ivyo)-r-2-p{xa,Do, *) 
—00 

+00     +00 

=       dz        dxdyA(x, y, z) exp(iux + ivy) 

0 -00 

exp \izsgn(k)y/k2 — p2\ 

•"■<»>   L ,/*->>—•      (A4) 

Multiplying both sides of (A4) by exp(-iux' - ivy1) and inte- 
grating with respect to u and v letting p from 0 to | k \, and further 
multiplying both sides of (A4) by k exp |_-iz'sgn(A;) ^Jk2 - p2\ 
and integrating with respect to k from -00 to +00, gives 

+00 +00    p=W 

I   I dxodyo   I dk I      dudv 

—00 —00 p=0 

x exp [iu(x0 - x')] exp [iv(y0 - y')} 

■ 2^X^k)kexp [-iz'sgn(k)Vk^^?] 

+00      +00 

=   I dz I      dxdyA(x,y,z) 

0 -00 

+?° exp \i(z - z')sgn(k) y/k2 - p2] 

■ I "^w    L    vf->>  
— OO 

P=|fc| 

•  /   / dudv exp [iu(x - x')} exp [««(y - y')]. (A5) 

p=0 

Rearranging the orders of integration of the right-hand side of 
(A5), we get 

+00     +00 +00 

right =   I dz I I dxdyA(x, y,z) II dudv 

0 —00 —00 

x exp [iu(x — x')] exp [iv(y — y')] 
+?      exp \i{z - z')V*2 - p2] 

• kdk L i 

Then, substituting (A7) into (A5) and dropping the primes, we 
get (12) and (13). 

Next, we want to show that under certain practical conditions, 
(12) reduces to a modified back projection formula. Replacing 
Kx and Ä"y in (11) with u and v, and then taking complex con- 
jugates of (11) and (A3), one gets 

+00 

G*k(r, r0) = j—T3  / / dudv exp [iu(x0 - x) + iv(y0 - y)] 

exp(iKzz) 
+00 

/ 
dK, 

and 
+00 

/ 
dK. 

K2 + p2-k2 

—OO 

exp(iKzz) 

(A8) 

zK2 + p2-k2 

' —iTTSgn(k) 
exp — iz sgn(fc)^/fc2 —p2 

i/fc'-p- 
exp  — zy/p^—k2 

-IT L   1  - 
y/p2-k2 

1*1 > ft 

1*1 < ft 

(A9) 

Then, substituting (A9) into (A8), taking the first derivative on 
variable z of (A8) and then making a comparison with (13), one 
finds 

f)    — ITC   f)  ~ 
f-zGl(T,T0) = - ^j+Kk(ro,r) + e*(r0,r),    (A10) 

where 
p=+oo 

ek(r, T0) = —-j   / /  dudv exp [iu(x0 - x)] 

p=|fc| 

x exp [iv(y0 - y)} 

•exp — z\Jp2 — k2\ . (All) 

If letting u = pcosip, v = p sin tp, xo — x = Rcosa, 
and yp — y = -Rsina, where p = \/u2 + v2 and 
R = ^/(x0 - x)2 + (2/0 - y)2, through changing the variables 
of integration, using the identity 

J   """" y/k2 - p2 

P 

/~p       exp  -i(z - z') \Jk2 - p2 

LJU  I  

2TT 

-P 

+  / kdk 
-y/W^p~2 .(AS) 

If we let w = sga(k)y/k2 - p2, (A6) reduces to 
+00     +00 4-00 

right =       dz        dxdyA(x, y,z) ■       /   / dudvdw 

0 —00 —OO 

x exp [iu(x — x')] exp [iv(y — y')] exp [i(z — z')w] 
+00     +00 

=       dz I     A(x,y,z)dxdy 

0 -00 

• (2*)H(x - x')S(y - y')S(z - z') 

= (2ir)3A(x',y',z'). (Al) 

— / d(f>exp[ipcp cos(cf) — a)] = Jo(pR) (A12) 
2-7T J 

0 

one can rewrite (Al 1) as 
+00 

£fc(r,r0) = —   / pdpJo(pR) exp [-zvV - fc2j .   (A13) 

As [24] shows 

t(r,r0)| < |e0(r,r0)| =—   / pdpJ0(pR)exp(-zp) 

|fc| 

+00 

£fc 

4ir{z2 + p2Y< 
z 

47r|r — r0 
|3- (A14) 
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However and its extent along z is infinite. Therefore, we may take a se- 

Q-zGk{v,v0)-- 
exp(-ifc|r - r0|) 

ries expansion of the recorded data on variable ipo and a 1-D 
Fourier transform on variable z0. Multiplying both sides of (B5) 
by exp(ryzo) and integrating with respect to z0 from -oo to 47r|r - r0| 

=    ~z     ( + jjt J G*k{r, r0). (A15)    +°°, and further multiplying both sides by exp(mpo) and in- 
lr-ro| Vlr_rol        / tegrating with respect to <^0 from 0 to 2ir, one obtains 

Therefore, under the condition |A;||r - r0| > 1, one gets 2*        +00 
a„ y\u -z dipo       dzo^y1^-exp(in(fo) expii-yzo) 

ÄG»<-»>>ÄF>3^Pal&(r'ro)l'       »     -" " 
(A16) 1     f  f  f +°° 

This means that the evanescent contribution eis negligible when = 4^2 / /   M r^(r)   2^   exp(imtp) 
\k\\r - r0| > 1 holds. Then, from (A10), we get J v m=-°° 

~ 2     d ~ i2k       z      ~ f 
^fc(ro,r)«-^5-^G^(r,ro)«7rc2 ,G^(r,r0). x      d<p0exp[i(n - m)<p0] 

(A17) { 
+OO 

APPENDIX B .   / dkzexp{ikzz)gmk(p,p0,kz) 

The delta function can be expressed in the circular cylindrical 
coordinates [22] 

—00 

+00 

6(r - r0) = -S(p - Pa)&{y - fo)S(z - z0) 
r 

x 

—00 

/ dz0 exp [«(7 - kz)ipo] 

+00 

= -6(p-p0)±-   ]T   exp[im(ip - <p0)] = 4^2 // J d*rA(?)   £   exp(imip)2ir8nm 
"                             m=—00 v                           m=—00 

*                                   +00 +00 

•—   / exp[ikz(z- z0)]dkz.              (Bl) .   / dkzexp(ikzz)gmk(p,p0,kz)2-KS('y - kz) 

—00 — 00 

Assuming a similar expansion of the Green's function as =              d3rA(r) exp{itup) 

1     +°° v 

G*(r,r0) = ^2    Y^   exp [im(<p - <p0)] x exp(i^z)gnk{p,p0,-y).                                (B6) 

+00 Here we use the values of k for 7Z < Ar to do the reconstruction. 
f  ,,         ,.,  ,          M         /         , s             /1DO>. Those values of k for which 72 > fc2 represent the evanescent 

J d*,exp[,M*-*o)]-$».fc(p,PoA).            (B2) wavesplaynoroleinthereconstmction.Inthecaseof72<fc2) 

~°° we can rewrite (B6) as 
Substituting (Bl) and (B2) into (8), we get 2%     +00 

f       f      2 p(r0,k) 
2d

2gmk      dgmk    u2       2,   2        21                Rl         ^ ^o    dzo-—r-j— 
Pi?   +p—T—+[(k-k;)p^-m\gmk = -po{p-Po)- J       J        %   Kc V 

dp1           dp      LV 0      -00 
CB31 r r t 

For the fc > 0 case, by letting p = ^/k2 - k2, one obtains xexp(m^o) exp(i7^o) = J J Jd3rA(r) exp(irup) 
v 

gmk{p,Po,kz)=
%-^Jm{pp)H^\pLp0)           (B4) xexp(t7z)J„(/ip) 

xH^iupo).   (B7) 
where if fc2 > A;2, gmk(p,Po,kz) = Im(-ipp)Km(-ipp0) 
with M = iy/kl - k2. Therefore, (7) can be expressed in the Multiplying both sides of (B7) by pJn(pp')/H^ >(pp0) and 
following form: integrating them with respect to p from 0 to +00, then multi- 

plying both sides by exp(—irup') and summing n from —00 to 

P(T0'k) =_L [ [ [ d3rA(r)   Y~   exp \im((p - w0)l +00' and fijrther m^P^ing both sides by exp(-ry2') and in- 
-ikc2t]     4-7T2 J J J m~.™ tegrating them with respect to 7 from-00 to+00, one gets 

2TT +00 +00 +00 

= ^2 / / / d3rA(r)   ^   exp [im(<p - <p0)] 
Y m=-oo 

f dkz exp [ifc,(Ä - zo)] gmk(p, Po, kz). (B5)       / dVo J dz0 J d7 exp [i7(z0 - /)] | ^~^ 
-OO —OO 

+ OO 

For the idealized cylindrical recording geometry, p(r0, A) is .   X^  exp [in((p0 - <pf)] —" 
a periodical function of angular variable (po with a 27r period n=-oo ^  (Wo) 
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+oo        po 2ir 

=       dz     pdp / d<pA(r)   I efy exp [i-y(z - z')\ 

-oo 0 0 0 

■ -t-oo +oo T» 

y~]  exp [in((p - <p')]   / pdpJn(pp)Jn(pp') 
n=—oo 

+oo po 27T 

=   f dz f pdp f d<pA(r) ■ 2%S(z - z') 

-oo 0 0 

P 
= (27r)

2^l(/5'^',z'). (B8) 

By dropping the primes, changing the integral variable from p 
to k according to p = \/k2 — 72 and rearranging the orders of 
the integration, one can rewrite the (B8) as 

2-7T +00 +00       +00 

A(P> <P>z) = 2^Jd(poJ dz°J dl\ kAhH^k) 
p(ro,k) 

0 -OO        -OO      -f|-y| 

-j-oo 

Y^ exp [in((po - <p)} 
ri= — OO 

J#> (p0y/W^) 
exp [27(2:0 - z)] 

2-7T +OO +OO 

p(r0,fc) =^Jd<PoJdZoIdkE^ 
0 -00 0 

+00 

^ exp [infoo - <p)] 
n=—00 

«/■ 
x /rf7 
_fc     ^^(poV*53^) 

■exp[i7(^o-«)]- (B9) 

Equation (B9) can be easily written in the forms of (18) and 
(19). 

Next, we want to show that (18) can be reduced to a mod- 
ified back projection under certain conditions. When £ > 1, 
according to the asymptotic expansions of the Hankel function, 
we get 

H^Hm^io 
< 

(BIO) 

Assuming po^Jk2 - 72 > 1, i.e., pak > 1, one can approxi- 
mate 

Therefore 

IpoVk^fH^ (p0Jtf^) . 

(Bll) 

+oo 1 ~r^ 

n=—oo 

x      d'y exp [17(20 - z)} 

-fc 

• Vk^^Jn (pV
/fc2-72) 

x /tf) (poV^3^) • (B12) 

We can argue that the values of 7 for 72 > k2 do not con- 
tribute to the reconstruction. Taking the complex conjugate of 
the Green's function in (B2) and replacing kz by 7, we may ex- 
clude these 7 satisfying 72 > k2 and approximate the Green's 
function as 

■     +00 T. 

G*k(r,r0)&—^ 53 exp[info0 - ¥>)]/<*7 exp [17(^0 - 2)] 

•Jn (pv^3?) ^2) (PV^^T
2

") • (B13) 

Letting zi = z0- z, the second-order partial derivative of (B13) 
with respect to z\ has the following relation: 

ö2 

Comparing (B12) with (B13), we get 

i2k    Lid2 

(B14) 

Kk(r0,r) = ■2-n\l1+ k2dz2 

Under the condition k\r - r0| > 1 

1   d2 ~t 1   ö2 

p^G£(r,r0)=pr^2 

G*(r,ro). (B15) 

exp(-«fc|r-r0|) 
47r|r - r0| 

(Zfj — z)    ~„ , - 

|7-r7FGfc(r'ro)- (B16) 

Then, (B15) approximates to 

ilk 
Kk(r,r0) 

irc2r) 
1- (*b - zy 

|r-r0|
2 GJ(r,r0).        (B17) 
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Effects of Acoustic Heterogeneity in Breast 
Thermoacoustic Tomography 

Yuan Xu and Lihong V. Wang, Senior Member, IEEE 

Abstract—The effects of wavefront distortions induced 
by acoustic heterogeneities in breast thermoacoustic tomog- 
raphy (TAT) are studied. Amplitude distortions are shown 
to be insignificant for different scales of acoustic hetero- 
geneities. For wavelength-scale, or smaller, heterogeneities, 
amplitude distortion of the wavefront is minor as a result 
of diffraction when the detectors are placed in the far field 
of the heterogeneities. Fbr larger-scale heterogeneities at 
the parenchyma wall, by using a ray approach (geometric 
optics), we show that no refraction-induced multipath in- 
terference occurs and, consequently, that no severe ampli- 
tude distortion, such as is found in ultrasound tomography, 
exists. Next, we consider the effects of phase distortions 
(errors in time-of-flight) in our numerical studies. The nu- 
merical results on the spreads of point sources and bound- 
aries caused by the phase distortions are in good agreement 
with the proposed formula. After that, we demonstrate that 
the blurring of images can be compensated for by using 
the distribution of acoustic velocity in the tissues in the 
reconstructions. The effects of the errors in the acoustical 
velocities on this compensation also are investigated. An ap- 
proach to implement the compensation using only TAT data 
is proposed. Lastly, the differences in the effects of acoustic 
heterogeneity and the generation of speckles in breast TAT 
and breast ultrasound imaging are discussed. 

I. INTRODUCTION 

WHEN an electromagnetic pulse is absorbed by biolog- 
ical tissue, the heating and subsequent expansion 

causes the emission of acoustic signals; this phenomenon 
is called the thermoacoustic effect. In thermoacoustic to- 
mography (TAT), the thermoacoustic signals from a tissue 
sample are collected to map the distribution of the radia- 
tion absorption within the sample. Radiation absorption is 
closely related to the physiological and pathological status 
of the tissue. For example, the microwave absorption rate 
of cancerous breast tissue is two to five times greater than 
that of the surrounding normal breast tissue. This differ- 
ence has been attributed to an increase in the amount of 
bound water and sodium within malignant cells [1]-[3J. 

The TAT combines good imaging resolution with high 
imaging contrast. Microwave imaging alone has the ad- 
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vantage of good imaging contrast but, suffers from poor 
spatial resolution [4]-[7]. On the other hand, purely ultra- 
sonic imaging has good spatial resolution but poor con- 
trast. TAT capitalizes on the advantages of both methods. 

There are a variety of reconstruction algorithms for 
TAT [8]-[13]. By using the approximation that the dis- 
tance between the detector and the absorbing object is 
much larger than the dimensions of the absorbing object, 
a three-dimensional (3-D) radon transform has been used 
to reconstruct objects in TAT [8]. A time-domain, focused- 
beam-forming technique also has been applied to image re- 
construction in the photoacoustic scanning of tissue struc- 
tures [9], and a delay-and-sum algorithm has been applied 
to microwave-induced TAT [12]. The above reconstructions 
were implemented in the time domain. In the frequency do- 
main, exact reconstruction algorithms for TAT have been 
implemented in planar, cylindrical, and spherical configu- 
rations with series expansion techniques [11]-[13]. 

An important assumption in the above reconstruction 
algorithms is that the tissue is acoustically homogeneous. 
For many medical imaging applications, including imaging 
of the female breast, this assumption is an approximation. 
For example, the speed of sound in the breast can vary 
from 1400 m/s to 1550 m/s. Errors due to the assumption 
of a constant acoustic speed, which has never been studied 
in TAT, potentially can have a pronounced effect on image 
quality. In breast ultrasound tomography (UT). however, 
wavefront distortion has been studied extensively [14]-[17]. 
The amplitude distortion caused by refraction dominates 
the phase distortion induced by acoustic speed variation 
in the breast UT [15]. Refraction occurs where there is a 
speed mismatch across a tissue interface. Because of refrac- 
tion, rays from a single source can reach the same receiver 
by different paths, as shown in Fig. 1. The interference 
between these rays causes strong amplitude distortions in 
breast UT. Different dcaberration methods have been pro- 
posed to compensate for phase distortion in UT [18], [19]. 
However, so far they have been inadequate to correct the 
strong amplitude distortion caused by refraction [20]. 

The effects of acoustic heterogeneity on breast TAT are 
estimated to be weaker than those in breast UT for the 
following reasons. First, signals in breast TAT are primar- 
ily in a lower frequency range (usually below 1.5 MHz [21]) 
than those in UT. Ultrasound scattering in this frequency 
range is weak. Second, in TAT, the acoustic source is in- 
duced by electromagnetic absorption; therefore, only one- 
way distortion on reception wave propagation occurs. As 
shown in Fig. 2, an acoustic ray, for example SBiD, needs 
to pass through interface £ only once. In contrast, in pure 

O885-3010/S1Ü.00 © 2003 IEEE 
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Fig. 1. Multipath interference caused by refraction at boundary- 
points B\ and 62 in breast ultrasound imaging in transmission mode. 
5 is a point source and D is a detector. 

Mineral oil 

ward problem in an acoustically heterogeneous model also 
is introduced at the end of Section III. The inversion al- 
gorithm of TCG, and the model and parameters used in 
the numerical simulations, are presented in Section IV. 
In Section V, the effects of phase distortion are studied 
numerically. We show how the degradation of the recon- 
structed images depends on acoustic heterogeneity when 
acoustic heterogeneity is not considered in the reconstruc- 
tion algorithm. Correction of phase distortion should be 
the first step for improving image quality in breast TAT 
because phase is much more important in imaging than 
amplitude when there is no severe amplitude distortion 
[23], [24]. Therefore, the reconstructions are implemented 
with consideration of acoustic velocity heterogeneity to il- 
lustrate how the imaging degradation can be compensated 
for. The effects of the errors in the acoustical velocities 
on this compensation also are investigated. In Section VI, 
an approach to implement compensation with only TAT 
data is proposed. The differences between breast TAT and 
breast ultrasound imaging on the effects of acoustic het- 
erogeneity and speckles are explained by their differences 
in central ultrasound frequency and detection geometry. 
Section VII presents conclusions. 

II. THE FORWARD PROBLEM IN A HOMOGENEOUS 

MODEL 

Fig. 2. Ray refraction at the parenchyma wall with breast TAT. The 
outer oval represents the breast surface, in which there is negligible 
refraction due to the good match of acoustic speed between fat and 
mineral oil. The solid line SBiD represents a ray in the heteroge- 
neous model; the dashed line SB2D represents that in a homogeneous 
model. S is a point source and D is a detector; B\, Bi are two points 
at the parenchyma wall. 

ultrasound imaging, either in the pulse-echo mode or in 
the transmission mode, ultrasound distortion includes two 
parts: distortion during both transmission and reception 
wave propagation. Therefore, the acoustic wave has to pass 
through the interface at least twice, as shown in SB2B1D 
in Pig. 1. Third, if the detection distance from the ob- 
jects are properly chosen, the effects of amplitude distor- 
tion can be minimized in breast TAT, as will be shown in 
Section III. 

In our work, we analyze the effects of amplitude dis- 
tortion and numerically simulate the effects of phase dis- 
tortion with the truncated conjugate gradient [22] (TCG) 
method. In Section II, we derive equations for the forward 
problem in an acoustically homogeneous model, which 
yields acoustic pressure from a known distribution of mi- 
crowave absorption. In Section III, %ve investigate the ef- 
fects of refraction on the wavefront amplitude and phase 
in breast TAT. We prove that, in breast TAT, a convex 
parenchyma wall (when observed from the outside of the 
parenchyma tissue) does not cause multipath interference 
and that the effects of amplitude distortion also are not 
severe for a concave boundary. An equation for the for- 

We begin by deriving a formula for the forward problem 
for an acoustically homogeneous model, then modify it at 
the end of Section III to consider velocity heterogeneity. In 
the case of thermal confinement, the acoustic wave at point 
r and time t, p(r, t), is related to the microwave absorption 
H(r.t) by the following wave equation [25]: 

Si2 -t&VVr.'O 
ßdH{v,t) 
C     dt    ' (1) 

where v3o is the acoustic speed, C is the specific heat, and 
ß is the coefficient of the volume thermal expansion. (1) 
can be rewritten in terms of H(r, t): 

™~£ölll 
dH(r',t')    dr7 

dt' |r-rT (2) 

where t' = t — |r - r'|/vs. The source term H(r,t) can 
further be written as the product of a spatial component 
and a temporal component, i.e.: 

H(r,t)=I0<p(r)r)(t), (3) 

where h is a scaling factor proportional to the incident 
radiation intensity, <p(r') describes the to-be-reconstructed 
microwave absorption properties of the medium at r', and 
rj(t) describes the shape of the irradiating pulse. Substi- 
tuting (3) into (4) results in: 

*■«-£; Iff«' 
dr)(t')    dr' 

dt'   jr - r'| (4) 
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We proceed by transforming the time-dependent wave 
equation into the temporal-frequency domain. Denoting 
the Fourier transforms of p and 7/ by p and 77, respectively, 
we have: 

/»oo 

p(r.t) — I     p(r.k)eiq>{ikt)dk, 

/oo 

7j(k) exp(ikt)dk. 
-00 

Substituting (5) into (4) results in: 

(5) 

p(r,&) = 
ißIokrj(k) 

4TTC /// 
f(r') 

, oxp (-ik\r-r,\/vs0) 

r'| 
rfr'. 

(6) 

Define p^r.k) = p(r, k)/(2nr)(k)), substitute it into (6), 
apply an inverse Fourier transform to both sides of the 
equation, and obtain the following equation: 

Pi(r..t) = 
vsnßh 0 IS V(r') 

4TTC  dt   JJ     |r-r'| 
f=(/(r',r) 

Jf*'. 

where 

t/(r',r) = |r-r'|/»,o; 

(7) 

(8) 

is the time-of-flight (TOF) from to r' to r; p\ (r, t) is the 
deconvolution of p(r, t) with respect to the length of the 
microwave pulse and can be interpreted as the detected 
pressure signal when the microwave pulse is infinitely nar- 
row. The physical meaning of this equation is that, in an 
acoustically homogenous medium, the pressure pi, at a 
spatial point r and time t. is proportional to the first-order 
temporal derivative of the integration of the absorbed mi- 
crowave energy over a spherical surface [a circle in the two- 
dimensional (2-D) case]. The spherical surface is centered 
at r and has a radius of tvSQ. 

III. THE EFFECT OF ACOUSTIC HETEROGENEITY 

rN TAT 

A TAT model is shown in Fig. 2. In our imaging system, 
mineral oil is chosen as the coupling medium for both mi- 
crowaves and ultrasonic waves. The acoustic speed in min- 
eral oil is 1437 m/s [26], which is very close to that in fat 
[27]. Therefore, there should be negligible refraction at the 
boundary between the breast and the mineral oil; conse- 
quently, we will consider only the effects of the acoustical 
heterogeneity within the breast. More details on our TAT 
experimental setup can be found in [12]. 

A. Amplitude Distortion Caused by Refraction 

Fig. 1 shows the multipath interference in breast ul- 
trasound imaging in transmission mode. The acoustic ray 
from source S can travel to detector D by two different 
paths. SD and SB^BiD. due to refraction at the inter- 
faces between different tissues. The interference between 

Fig. 3. Diagram showing that no two rays from a point source S will 
intersect with each other after being refracted at a convex boundary 
£ and entering a medium with a slower acoustic speed. S is a point 
source: D\ and D? are detectors; 0i, fa-, and #3 are the incidence 
angles; $1, 02, and Ö3 are the transmission angles; the solid lines rep- 
resent acoustic rays; Bi, B2, B& are three points at the parenchyma 
wall; vp, Vso are the mean acoustic speeds in the parenchyma tissue 
and the fat tissue, respectively; and vp > t;so. 

the two rays can cause amplitude distortion [15]. In the 
following subsections, we will first prove that there is no 
multipath interference in the case of a convex parenchyma 
wall in breast TAT. Then, we will show that the amplitude 
distortion also is not severe for a concave parenchyma wall. 

1. Convex Boundary: In this subsection, we will show 
that there is no multipath interference in the TAT of the 
breast with a convex parenchyma wall by proving that 
no two rays from a source within the parenchyma will in- 
tersect with each other after refractions at the wall. The 
model is shown in Fig. 3, where S is an acoustic source: vp 

and Vso are the acoustic speed in the breast parenchyma 
and the medium (also the fat), respectively (vp > V3Q); the 
dashed lines are the normals of the boundary at points Bj, 
&2, jt?3, respectively; <pi, <p2, and fa are the angles of in- 
cidence; öi, 02, and #3 and are the angles of transmission; 
and the solid lines represent the acoustic rays. Because 
the boundary is convex, it can be inferred that rotation 
from the normal at point B2 to the normal at point J3i 
is clockwise and the angle is Oo (positive). We also have 
02 < 00 + fa, which can be seen by extending lines SB? 
and SBi to the outside of the boundary and noticing that 
SB2 and SBi will never intersect outside the boundary. 
To prove B2D1 and B\D\ will not intersect outside the 
boundary, we need to show 92 < 9Q + 6\. According to 
Snell's law, we have: 

sin #2 = (1 — 0) sin 02, 

sinÖi = (1 — Q) sin 0i, 
(9) 

where a — 1 — VSQ/VV. which is positive when vv > vso- 
The problem can be discussed under two conditions: 

02 < 0i ■ In this case, according to (9), we have 62 < #i 
and therefore 62 < 0o + #i ■ And 

02 > 01- (9) can be transformed to: 

sm 

(ä4±)- 

osin(01) 

2 cos ((ft + 0i)/2)' 

asin(02) 
'2cos((02 + 02)/2)' 

(10) 
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Because fa > fa and consequently 92 > 0i, it is straight- 
forward to obtain 62 - fa < #i - fa from (10). Using 
fa < 0o + fa » we have 62 < 0n + 0i. In conclusion, we prove 
that, after the rays from a point source go into another 
medium with a slower acoustic speed, the rays cannot in- 
tersect with each other when the interface is convex. In an- 
other words, for any pairing of point source and detector, 
there is only one acoustic path that satisfies SnelFs law. 
Consequently, no multipath interference occurs and ampli- 
tude distortion can be ignored. This conclusion also can be 
applied to a boundary with wavelength-scale concave seg- 
ments. This kind of boundary can be treated as a convex 
boundary approximately because the effects of the small 
concave segments can be neglected when the detectors are 
placed in the far field of the segments, as will be shown in 
the following subsection. In contrast, multipath interfer- 
ence docs occur after rays pass a convex parenchyma wall 
in ultrasound imaging, as shown in Fig. 1. This difference 
makes the amplitude distortion in TAT of the breast with a 
convex, or approximately convex parenchyma wall, smaller 
than that in pure ultrasound imaging. 

2. Concave Boundary: We realize that, in reality, the 
boundary between mammary tissue and subcutaneous fat 
tissue might be concave and quite irregular. In this subsec- 
tion, we will show that the amplitude distortion caused by 
a concave boundary is not severe. Basically, this conclu- 
sion can be explained as follows. With wavelength-scale or 
smaller heterogeneities, amplitude distortion of the wave- 
fronts is minor due to diffraction when the detectors are 
placed in the far field of the irregular boundary segment. 
When the size of the concave segment is larger, according 
to the imaging formula of concave boundaries shown be- 
low, only imaginary images exist after the wavefronts from 
real objects pass through the concave boundary. Equiva- 
lently, no two rays from a point source will intersect with 
each other after passing through the concave boundary 
segment and no strong amplitude distortion occurs. In the 
following subsection, we will define two kinds of multipath 
interference: focusing-type and nonfocusing-type interfer- 
ences. The former can induce amplitude distortion in botli 
narrowband and broadband signals: the latter can induce 
only amplitude distortion in narrowband signals. As a con- 
sequence, we need only examine in detail the focusing-type 
interference, because signals in breast TAT are broadband. 

Definition of focusing-type and nonfocusing-type inter- 
ferences. Fig. 4 shows the two different kinds of multipath 
interferences. Three different ray paths SBiD, SB2D, 
SB3D from source S to detector D are shown, and each 
of them is assumed to satisfy the refraction law. The 
SBiD and SB2D can be considered as a small modifi- 
cation of the straight line SD due to weak heterogeneity, 
and SBzD is far away from SD. We use focusing-type in- 
terference to refer to the interference between pulses along 
the paths with the same TOFs. The interference between 
SBiD and SB2D is of this type. This is because SBtD 
and SB2D satisfy the refraction law, and their TOFs are 
local minima according to Fermat's principle [28]. Conse- 

Pig. 4. Diagram to show two types of multipath interferences 
caused by a concave boundary: focusing-type interference between 
SB\D and 6'SjD and nonfocusing-type interference between SB\D 
(SB2D) and SBiD. In a focusing-type interference, the different rays 
have approximately the same TOF, which consequently yields con- 
structive interference and strong amplitude distortion. In this case, 
the boundary segment around B\Bi can be considered as a lens. 
In nonfocusing-type interference, the difference of the TOFs along 
two rays is larger than the pulse width; consequently, the pulses are 
separated temporally and no strong amplitude distortion occurs. See 
Fig. 3 for the symbols' definitions. 

quently the rays around SB\D and SB2D should have 
almost the same TOF. After noticing that B\ and B2 

are close to each other, it can be inferred that SB\D and 
SBiD have the same TOFs. Actually, the boundary seg- 
ment around B\B2 can be considered a focusing lens and 
can produce strong amplitude distortion even for broad- 
band pulses, as verified by the strong amplitude distor- 
tion in broadband breast ultrasound imaging [15]. As a 
contrast, we use nonfocusing-type interference to refer to 
the interference between the pulses along paths with dif- 
ferent TOFs. The interference between SB3D and SB\D 
{SB2D) is a nonfocusing-type interference, because B$ is 
far from B\ and B2, and generally it can be assumed that 
\tsBiD ~tSB3D\ and \tsB2D -tsBslA {tsBiD: t-SB2D: and 
tsB3D are the TOFs along ray paths SBiD, SB2D, and 
SB3D, respectively) are larger than 1 ßs, the average pulse 
width of thermoacoustic signals in our RF TAT experi- 
ments. Consequently, the pulse along SB^D is separated 
temporally from the pulses along SBiD, SB2D, and the 
interference between SB3D and SBiD (SB2D) is insignif- 
icant. Similar analyses can be found in the pure ultrasound 
imaging literature [15]. 

The signals along SBiD may introduce artifacts in 
the reconstructed images because detector D receives two 
pulses from source S—one along SB\D and SB2D, and 
the other along SB3D. To estimate the effects of signals 
along path SB3D, we numerically simulate refractions at 
arbitrary boundaries, at which the locations of soiirce S 
and detector D are randomly chosen. We find that the 
SBaD-type refraction rarely occurs. Therefore, we expect 
the artifacts introduced by the signals along SBiD to be 
insignificant; and, in the following studies, we consider only 
focusing-type interference. 

Analysis of focusing-type interference. For a boundary 
segment with a size of 2a much larger than the wavelength 
of interest A, we will use a ray model to study the effects 
of refraction. To have focusing-type interference, the posi- 
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In the derivation of (11), ray theory is utilized. Ray 
theory is valid under the following conditions [29]: 

tions of the source and detector must satisfy the following 
equation: 

1 a 1 

hßjc°s<pi      lBlD(l-a)/cos<j>i      Ri      f ,^ 

where / is the focal length of segment B1B2 in Fig. 4 and 
/ = Ri/a; Ri is the radius of the segment; and IsBi and 
hiD are the lengths of line SBi and DBi, respectively. 
The derivation of (11) can be found in Appendix A. To 
have a real image, or equivalently to have two rays inter- 
sect after passing through boundary segment BiB2, (11) 
requires: 

ISBJCOS(<P\) > Ri/a. (12) 

Next, we derive another requirement due to diffraction 
for the occurrence of strong amplitude distortion. The 
smallest beam width after a wavefront passes through a 
boundary segment with a size of 2a is i^oA/a. where A is 
the wavelength of the acoustic wavefront. To induce strong 
focusing, for example, to have a beam width smaller than 
a at D. we need to have: 

IBXD < a?/\. (13) 

The right-hand side of the above inequality is the same as 
the definition of the near-field length of a plain transducer 
when a is considered as the radius of the transducer. Tt is 
well-known that the amplitude can change rapidly in the 
near field due to the acoustic interference, but it is much 
smoother in the far field. Similarly, if the detector is placed 
within the far field of the concave boundary segment, the 
amplitude distortion will be less severe in TAT. 

Eq. (13) is derived for the case in which a wave- 
front propagates perpendicularly to the boundary seg- 
ment. When a wavefront is incident obliquely upon the 
segment B\Bi, the effective size of the lens in (13) should 
be the projection of its geometrical size onto the plane 
perpendicular to the propagation direction of the incident 
wave. Then we have: 

IB1D < {acos<t>i)2/\. (14) 

By combining (14), (12), and Rt > a, we obtain the follow- 
ing requirement, for inducing strong amplitude distortion 
after passing through the boundary: 

ISBI > 
V^BifjA 

(15) 

and 

It can be seen from this equation that when IB^D is 
large enough: 

IB^D > 
(ISB, a) (16) 

the strong amplitude distortion can be minimized. Notice 
that the required minimum detection distance in (16) in- 
creases linearly with the frequency of the wave. 

JBlD<4o2/A, 

2a» A. 

(17) 

(18) 

Eq. (17) is similar to (13), but the former is stronger; 
(17) states that the ray model is valid when the wave prop- 
agation distance from the heterogeneity is much smaller 
than 4tt2/A; beyond that distance, diffraction must be con- 
sidered. In our analysis of amplitude distortion in TAT, we 
extend the effective range of the ray model from (17) to 
(13). This is based on the assumption that the ray model 
overestimates the wavefront distortions due to ignorance 
of the diffraction effect. Therefore, if the analysis using ray 
theory shows that there is only minor amplitude distortion 
when (16) and (18) are met, the analysis from the exact 
wave equation should yield the same result. 

For a wavelength-scale boundary segment (e.g., 2o < 
4A), (18) is violated, and (16) cannot be applied. In this 
case, strong amplitude distortion can be minimized by 
placing the detector within the far field of the heterogene- 
ity: 

hiD> 4A: (19) 

where we have substituted la < 4A into (13). Combining 
(16) and (19), we obtain the minimum detection distance 
for avoiding strong amplitude distortion induced by differ- 
ent scales of heterogeneities: 

hiD > max 
{IsB^f 

4A (20) 

where max{] represents computing the maximum. Using 
the following parameters, ISBI < 10 cm (the assumed 
size of the breast parenchyma), and a = 0.07. in which 
the mean velocity in the subcutaneous zone v/ and the 
breast parenchyma vp are assumed to be 1437 m/s [28] 
and 1546 m/s [30], respectively, we have IBXD > 4.9 cm 
for 1.5 MHz ultrasound and IB^ > 163 cm for 0.5 MHz 
ultrasound. These requirements can be met easily in TAT 
experiments. For ultrasound waves with a frequency less 
than 0.5 MHz, it is not necessary to apply (20), because 
ultrasound scattering by soft tissue in this frequency range 
can be neglected and no severe amplitude distortion is ex- 
pected. 

The above analysis is made for 2-D TAT. This corre- 
sponds to the experimental configuration in which a lin- 
ear, or ring array of transducers with a cylindrical surface 
is used, and a section image of the breast in the detec- 
tion plane is desired. However, because of the refraction at 
the parenchyma wall, the thermoacoustic waves from the 
objects within the detection plane might deviate out of 
the plane. On the other hand, the signals collected in the 
detection plane are transmitted by the objects out of the 
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detection plane rather than within it. Consequently, the 
obtained image is actually a projection of the out-of-plane 
objects onto the detection plane. To reduce this kind of 
error, we can use the technique of compressing the breast 
against the chest wall, which has proven to be effective in 
reducing wavefront distortions in breast ultrasound imag- 
ing. After the compression, the acoustic signals can pass 
through the interface more or less perpendicularly. How- 
ever, the ultimate solution to this problem is 3-D TAT. 
Most of the 2-D results on amplitude distortions (e.g.. 
(14), (16), (20), and the results on phase distortions shown 
later) can be directly applied to 3-D TAT; (11) also can 
be applied to analyze a 3-D convex boundary locally by 
substituting — ft; for ft/. Then, it is straightforward to see 
that in a 3-D case no two rays can intersect with each other 
after passing a convex boundary segment. 

In summary, our analysis shows that, in RF breast TAT, 
if the detection is made at a distance to the breast sur- 
face required by (20), the amplitude distortion caused by 
the refraction at the parenchyma wall is not important be- 
cause of the diffraction effect and the fact that TAT signals 
are broadband, have low central frequency, and experience 
only one-way transmission through the parenchyma wall. 
The effect of intramammary fat lobules will be addressed 
in Section VI. Therefore, in the following analysis and sim- 
ulations, we will consider only phase distortion. 

B. Phase Distoition Caused by Refraction and 
Speed Variation 

If the background is acoustically homogeneous, an 
acoustic ray from source S in Fig. 2 goes along the straight 
line SD to reach detector D. When there is acoustic het- 
erogeneity, an acoustic ray goes along line SB\D because 
of refraction at the interface. Assume there is no change 
in the shape of the acoustic pulse caused by acoustic het- 
erogeneity. The TOF from source S to detector D in the 
acoustically heterogeneous model is: 

tSBiD [      dl/vs(r"): 
JSBiD 

(21) 

where vs(r") is the local acoustic speed, and r" is a point 
within line SBiD. Now, we will show that tsB,D can be 
approximated to the second order of a small value e = 
Mr") -vs0)/vso by tSo = fSDdl/vs(r"), where vs0 is 
the velocity used in the acoustically homogeneous model. 
According to Fermat's principle, an acoustic ray travels on 
the fastest path. In other words, SB\ D is a local minimum 
of TOF. Now assume B\ is displaced to B' by a small 
distance q = \BB'\, 

lso 
= o{e). (22) 

After expanding tsD'D around (sBiD with respect to q, 
we have: 

tsB'D =tsB1D + q 
dtsB'D 

dq 
+ o(e2). 

q=0 
(23) 

at, 
Recalling that SBiD is a local minimum, we have 

.   Substituting   it   into   (23)   and   assuming 
9<J ,=o 

IB2B,/ISD = o(e) due to the weak acoustic heterogeneity 
in breast tissue, wc have: 

tSD = f   dl/vs(r") ■■ 
JSD 

tsB^D + oie2). (24) 

The above result can be understood in the following 
way. Although the path length of SB\D in Fig. 2 is longer 
than that of SD and (IsBj +IDBI -ISD)/ISD — o(e), 
path SD has a longer part within the slow-speed area than 
path SB\D. The combination of the two opposite effects 
leads to the cancellation of the first-order term of £ in (24). 

Next we will show that the approximation of tsBiD by 
tSD includes most of the flight-time variation induced by 
acoustic heterogeneity. The TOF from source S to detec- 
tor D in an acoustically homogeneous and heterogeneous 
model is ISD/V3O and tsBiD, respectively. The difference 
between them is: 

St = \tsBtD - ISD/V,O\ 

— \tsBiD — tsD+tSD ~ ISD/VSO\ 

« \o(e2) + tSD - ISD/VSO\ « o(e), 

(25) 

where we used (24). Combining St with (24), we have: 

\tsD - tsB!P\ 
St 

= o(e). (26) 

Therefore, the error in the approximation of isfli D by 
tsD is not important. At last, it should be pointed out that 
our analysis of TOF can be applied to both 2-D and 3-D 
TAT. 

C. Forward Formula in an Acoustically 
Heterogeneous Model 

In our analysis of TOF, we consider only a single in- 
terface. The results can be extended to the case involving 
several interfaces. In general, the TOF from r to r' can be 
expressed as: 

tf(r',r)= [        dl/vs(r") + o(e2), 
JL(r',r) 

(27) 

where L{v'. r) is the straight line from r' to r, and r" lies 
within the line L. Combining (27) and (7), we obtain the 
forward formula for acoustically heterogeneous TAT. 

Our analysis of TOF is in agreement with the results 
from a more rigid model [31]. It was reported that the 
variation in travel time caused directly by acoustic speed 
heterogeneity is a first-order perturbation, and that the 
effect of the ray bending on the travel times is a second- 
order one. For breast tissue, which is weakly acoustically 
heterogeneous, it is enough to consider the first-order per- 
turbation by computing the integral of the slowness per- 
turbation along straight lines, as shown in (27). 
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IV. IMPLEMENTATION AND MODELING OF NUMERICAL 

SIMULATIONS 

A. Numerical Implementation 

It can be seen from (7) that pi(r,t) can be obtained 
from tp(v') after applying two linear operations to it: one 
is integration over the object space, the other is differen- 
tiation over t. Therefore, in its discrete form. (7) is a set 
of linear equations: 

M<p = p. (28) 

where M is the matrix representing the product of the 
two linear operators. The standard teclmiques of solving 
a linear equation system can be used. We adopted the 
TCG method to minimize the object function ||My - p|| 
in the sense of least square root and no preconditioner 
is used. In the implementation of TCG, instead of the 
whole matrix M, a function that gives the multiplication 
of matrix M and its adjoin with an arbitrary vector is re- 
quired. Consequently, the demand on computer memory 
is reduced greatly, compared with many other techniques 
that require storing the whole matrix M in memory. #An- 
other advantage of TCG is that an approximate result can 
be obtained by stopping the iteration before reaching the 
full convergence. The truncation not only saves compu- 
tation time but also provides a way of regularization for 
stabilizing the results. In (28), we use the Savitzky-Golay 
smoothing method [32], rather than the finite differentia- 
tion method to implement the operation of the first-order 
temporal derivative, as the former yields a much smoother 
and more accurate result than the latter when data are 
noisy. We truncated our simulations after 15 iterations, 
which corresponds to the relative changes in the norms of 
the results, about 0.7% for the acoustically homogeneous 
model and up to 6% for the acoustically heterogeneous 
model. In both cases, fin-ther iterations yield little visible 
improvement to image and may induce instability. 

In our simulations, we choose the 2-D case rather than 
the 3-D case because the computational complexity can 
be reduced and because it is much easier to interpret and 
graph a 2-D image. For the 2-D case, the integration in (7) 
is over a curve instead of a spherical surface: 

Pi(r,0 = 4nC  dt f rtf) 

i=«/(r',r) 
|r-r'| 77*'»        (29) 

where tj is determined by (27). Nevertheless, the conclu- 
sions of a 2-D case can be extended to a 3-D one. 

B. Model and Parameters in Numerical Simulations 

Fig. 5(a) and (b) illustrate the acoustic and RF ab- 
sorption models of the breast, respectively. The acoustic 
model of the breast in our simulations is based on ex- 
perimental results on the distribution of acoustic speed in 
the breast [27]-[30]. Acoustic speed in the breast may vary 

20 mm 20 mm 

0.95     1      1.05    1.1     1.15 
Acoustic velocity 

0.82    1.6     2.5     3.3 
Energy deposition 

Fig. 5. (a) Distribution of acoustic velocity normalized to vBo for a 
breast model. The breast surface is represented by the outer circle; 
the wall between the breast parenchyma and the subcutaneous fat 
is represented by the inner irregular boundary, (b) The microwave 
absorption distribution in our model. The four small spots represent 
the assumed tumors. 

from 1400 m/s to 1550 m/s. Generally, a zone of low veloc- 
ity (1400-1450 m/s) characterizes subcutaneous fat [33]. 
The speed in normal dense parenchyma is higher, vary- 
ing from 1500 m/s to 1550 m/s [30]. In Fig. 5 the outer 
circles, with a radius of 50 mm, represent the breast sur- 
face. The inner irregular boundaries, which are generated 
by randomly modifying a circle, represent the walls of the 
breast parenchyma. The size of the parenchyma tissue was 
changed in different simulations because the ratio of breast 
parenchyma to subcutaneous fat may change with age. 
Usually, a young female breast has less fat than an older 
one does. The mean velocity in the subcutaneous zone Vf 
and the breast parenchyma vp are set to be 1437 m/s [27] 
and 1546 m/s [30], respectively. A random component, 
which is a normal distribution with a mean of zero and 
a variance of 33 m/s, is added to the velocity distribution 
to simulate the velocity fluctuations in the subcutaneous 
zone [33] and the breast parenchyma [30], Later, our sim- 
ulation results show that the random component of ve- 
locity will induce little spread in the images due to the 
cancellation after integration. To ensure that the acous- 
tic speed does not change sharply within each tissue, the 
random component is smoothed spatially by introducing 
a correlation length as shown below. The imaged area is 
divided into patches with side dimensions of a correlation 
length. The value of the random component at the center 
of each patch is determined according to the normal dis- 
tribution mentioned above; then the random component 
within the patch decreases linearly to zero at the bound- 
ary of the patch. Wc tried different correlation lengths in 
our simulations, from 12 mm (about the size of fat lob- 
ules in parenchyma tissue) to 3 mm. The image degrades 
more with increasing correlation length, but the difference 
is minor. The correlation length was chosen to be about 
6 mm for the reported results. The speed distribution in 
Fig. 5 was normalized to 1437 m/s, which is assumed to 
be the acoustic velocity in the medium surrounding the 
breast and the mean acoustic speed in the subcutaneous 
fat. 
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The RF absorption model of the breast is shown in 
Fig. 5(b). The boundary shapes arc the same as in 
Fig. 5(a). The RF absorption coefficients in fat, tumors, 
and the coupling oil are set to be 0.3. 3, and 0 after be- 
ing normalized to that in the parenchyma. The tumors, 
shown in Fig. 5(b) as dark spots, are placed evenly along 
the horizontal direction to study the dependence of the 
distortions in the images on the tumor locations. We set 
the radii of the four tumors to about 1.2 mm to simulate 
approximately the point-source spread caused by acoustic 
heterogeneity. 

The parenchyma wall in our simulation is generated as 
the following equation: r(0) = rp(l + Ag(6)), where r(0) 
is the radius of the boundary at angle 6. rp is the mean 
radius of the boundary and is used to represent the size of 
the parenchyma tissue, A is the distortion amplitude, and 
g{&) generates random numbers within [—1,1]. 

The parameters in our simulations are chosen as follows 
unless stated otherwise. Noise is added to the generated 
signals so that the frequency range with signal-to-noise ra- 
tio (SNR) larger than unity is from 0 to 1.5 MHz. which ap- 
proximates our experimental results [21]. The radius of the 
circle of detection is set to be 125 mm to meet (16); the an- 
gle range of detection is 27r with 400 steps. An insufficient 
number of scanning steps can cause radial aliases in the 
reconstructed image [13]. Thermoacoustic signals are sam- 
pled for 108 (is at a sampling rate of about 14 MHz, which 
is sufficient to meet the Nyquist criteria. The 100 mm by 
100 mm imaging field is mapped with a 256 by 256 mesh. In 
our simulations, the thermoacoustic signals are generated 
in an acoustically inhomogeneous model, and the recon- 
struction is implemented for two cases—with and without 
the consideration of acoustic heterogeneity. 

V. NUMERICAL RESULTS 

We first study the effect of acoustic heterogeneity on 
imaging when acoustic heterogeneity is considered in the 
forward problem but not in the reconstruction. In the re- 
construction, vs(r) in (27) is set to be vs0. Then we show 
how to improve image resolution after considering acous- 
tic heterogeneity in the reconstructions. And, the effects of 
measurement errors in vj. vp and E on the improvement 
are investigated. 

A. Reconstruction Without Considering Heterogeneity 

Fig. 6(a)-(d) shows the results when acoustic hetero- 
geneity is not considered in the reconstructions. In the four 
simulations, the mean radii of the parenchyma wall rp are 
set to be 0.8, 0.6, 0.4, and 0.2 of the breast radius. The wall 
is distorted randomly in the simulations, and the distor- 
tion amplitude is 0.1. We measure the point-spread width 
(PSW), which is the width of the image of a point source 
along a specific direction minus its real size, 2.4 mm, and 
the boundary spread width (BSW), which is the width of 
the blurred parenchyma wall E in an image. It is clear from 
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Fig. 6. Images when acoustic heterogeneity is not considered in the 
reconstructions. The mean radii of the parenchyma wall are set to be 
(a) 0.8, (b) 0.6, (c) 0.4, and (d) 0.2 of the breast radius, respectively. 
The point-spread width and the boundary-spread width increase lin- 
early with the size of the parenchyma tissue. Note that the spread 
of points outside the parenchyma tissue are much smaller than the 
spread inside. 

Fig. 7. Diagram for deriving (30), which estimates the spread of a 
point, source S along line D1D2 due to TOF error. Si is the intersec- 
tion of D\ D2 with the backprojection arch of the signal transmitted 
by source S and detected by detector Z>i: 52 is the corresponding 
one at D?. 

Fig. 6 that PSW and BSW increase with the radius of the 
parenchyma wall. It is proved in Appendix B that the two 
widths can be estimated by the following equation: 

w = lpa, (30) 

where lp is 1rv in the case of BSW: in the case of PSW. lp 

is the length of a ray within the parenchyma tissue along 
a specific direction (for example the length of B1B2 in 
Fig. 7). The PSW is anisotropic because lv depends on 
direction. This aiiisotropy of PSW can be verified by the 
observation that the three tumors within the parenchyma 
tissue in Fig. 6(a) and (b) have the same spread along the 
horizontal direction, and their spreads along the vertical 
direction decrease when the tumors are located away from 
the center. 
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Fig. 8. Quantitative results of the point-spread width and boundary- 
spread width along the horizontal direction in eight simulations in 
which the mean radius of the parenchyma wall changes from 0.1 
to 0.8 of the breast radius using a step of 0.1. The corresponding 
linear fittings of PSW (dashed) and BSW (dash-dotted) are in good 
agreement with the proposed formula (30). 

Object A 

Detection curve 

Fig. 9. Diagram showing that in TAT a TT or wider view can provide 
complete data for reconstruction. A view means the angle subtended 
by the detection curve when observed from the to-be-imaged object. 
Object A has a view larger than 7r, and object B has a view less 
than jr. 

Fig. 8 shows the quantitative results (with an error of 
±0.8 mm) of the PSW and BSW along the horizontal di- 
rection in eight simulations in which the radius changes 
from 0.1 to 0.8 of the breast radius with a step of 0.1. The 
corresponding linear fitting results for the PSW and BSW 
are shown as dashed and dash-dotted lines, respectively. 
The slopes of the two lines are 0.071 and 0.0705, respec- 
tively, both of which are close to the estimated rate of 0.07 
derived from (30) after substituting the parameters used 
in our simulations, the radius of the breast r;, = 50 mm 
and a = 0.07. 

Another interesting point in Fig. 6 is that the PSW 
of the objects outside the parenchyma tissue are affected 
little by acoustic heterogeneity. Only minor artifacts are 
observed near them. This is because in TAT air or wider 
view can provide complete data for reconstruction [34]. 
Here, a view means the angle subtended by the detec- 
tion curve when observed from the to-be-imaged object. 
For example, object A in Fig. 9 has a view larger than 
7T, and object B's is less than TT. If an object is outside 
the parenchyma tissue, it has at least a 7r-view detection 
range in which the medium between the object and the de- 
tectors is acoustically homogeneous. Therefore, a perfect 
image can be reconstructed from this part of the data. On 
the other hand, the image reconstructed from the part of 
signals that experience the heterogeneous medium is weak 

:)• 
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Fig! 10. (a) Compensation for the degradation in images when com- 
plete acoustic heterogeneity information is included in the recon- 
structions, (b) Only exact vv, Vf, and £ are included to show the 
insensitivity of improvement to a random component of the acoustic- 
velocity distribution, (c) and (d) Images in which there are (c) 1% 
and (d) 3% errors in vp, respectively, (e) Images in which E is scaled 
down by 10%. (f) Images in which 20% random error is introduced in 
S. These results show the stability of the improvement to the errors 
in vp, Vf, and S. 

in amplitude because the flight-time errors compromise the 
build-up strength of the signals. 

In addition to blurring of images, acoustic heterogeneity 
increases the background noise level and decreases the val- 
ues of reconstructed tumors, which consequently reduces 
the contrast of tumors in the images and the detectability 
of small tumors. A comprehensive quantitative study of 
this issue will depend on the SNR of the hardware of the 
imaging system, the parameters of the imaging system and 
reconstruction algorithms, and the contrast of the to-be- 
imaged objects. Meaningful conclusions should be made 
based on relevant experimental data which we leave for 
future study. 

B. Reconstruction with the Consideration of Heterogeneity 

The exact distribution of acoustic velocity is included 
in the model in Fig. 10(a). Although the result is good, 
it is not practical, because it is not feasible to obtain the 
exact distribution of velocity in the breast by current tech- 
nology. A much more practical situation is when the mean 
velocities Vf,vp, and boundary profile S are approximately 
known and the velocity fluctuation within each area is un- 
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acoustic-velocity distribution in Fig. 11(b), can be ex- 
plained by modifying (30) to: 

c 
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2 mm 

0.72    1.4    2.08   2.76   3.44 
Energy deposition 

W 

Fig. 11. (a)-(f) Close-up images around the central tumor hi Fig. 10. 
Compensation for the degradation in images when complete acoustic 
heterogeneity information is included in the reconstructions, (b) Only 
exact Vp,vf, and S are included to show the insensitivity of improve- 
ment to a random component of the acoustic-velocity distribution, 
(c) and (d) Images in which there are (c) 1% and (d) 3% errors in vp, 
respectively, (e) Image in which 2 is scaled down by 10%. (f) Image 
in which 20% random error is introduced in £. 

known. Different approaches to obtain vf, vp, and bound- 
ary profile E will be explored in Section VI. Here, we 
will show the effectiveness of our compensation method. 
Figs. 10(b)-(f) show the images reconstructed from the 
same data as in Fig. 10(a). but the reconstruction algo- 
rithm used only v/, vp, and E to study the effects of the 
measurement errors in v/, vp, and E on the improvement. 
In Figs. 10(b)-(f), the random component of the acoustic- 
velocity distribution is ignored. In addition. vp is decreased 
by 1% and 3% in Figs. 10(c) and (d), respectively: E is 
scaled down by 10% in Fig. 10(e); and a 20% random er- 
ror is introduced to E in Fig. 10(f). Figs. ll(a)-(f) are the 
corresponding close-up images around the central tumor 
in Fig. 10. The rp in these simulations is 0.6 of the breast 
radius, and the distortion amplitude of the parenchyma 
wall is 0.2. 

1. Effect of Errors in Velocities: There is little dif- 
ference between the resolution of the reconstructed im- 
ages when we consider [Fig. 11(a)] and do not consider 
[Fig. 11(b)] the random component of velocity distribu- 
tion, although the artifacts in the background in Fig. 11(b) 
are a little stronger than those in Fig. 11(a). The good 
resolution, after ignoring the random component of the 

=    I a(r")dlp, (31) 

BiBi 

where a(r") = 1 - v„n/vp(r") and is spatially dependent; 
the integration is over the line B1B2 in Fig. 7. It can be 
found that the contributions of the random component of 
velocity are canceled in some degree after the integration 
over an acoustic ray. 

Comparing Figs. 11(c) and (d) with Fig. 11(b), it can be 
noticed that a 1% error in vp does not degrade the imaging 
quality much, but a 3% error in vv greatly deteriorates 
the imaging resolution and contrast. This is because in 
our model the difference between Vf and vp is about 7% 
of their speeds, and a 3% error in vp actually accounts 
for 42% of the difference between vj and vp. Therefore, 
we conclude that an accuracy of 1% in the determination 
of vp is sufficient for significant improvement in imaging 
resolution. 

2. Effects of Errors in Determining E; In the model 
in Fig. H(e), the boundary E is scaled down by 10%. 
In Fig. 11(f), a random component is added to the real 
boundary, which is implemented by multiplying the real 
radii of a boundary with uniform random numbers within 
[0.8,1.2]. After comparing Figs. 11(e) and (f) with other 
components of Fig. 11, it is found that compensation is 
less sensitive to error in determining E as vp. This is be- 
cause a 10% error, which is about 6 mm in the diameter 
of the parenchyma wall, adds an error of at most 0.42 mm 
to the PSW and BSW according to (30). 

VI. DISCUSSION 

A. Effect of Small Fat Lobules 

In breast UT, centimeter-scale fat lobules in the 
parenchyma tissue also can cause significant distortion. In 
breast TAT, the amplitude distortion due to centimeter- 
scale fat lobules is estimated to be insignificant because of 
the diffraction effect, as discussed in Section III-A,2. For 
example, substituting a = 1 cm, A = 1.5 mm in (13), we 
obtain a near-field length of 6.7 cm. Therefore, no strong 
amplitude distortion is expected when detectors are placed 
farther than 6.7 cm from the lobule. In addition, Figs. 6 
(b)-(d) show that the images of point sources outside an 
acoustic heterogeneity are affected little by the acoustic 
heterogeneity due to the completeness of the w-view de- 
tection in TAT. This explanation also can be applied to 
the distortion caused by fat lobules. When a fat lobule 
on one side of an acoustic source causes severe distortion, 
the signals that are spared from severe distortion in other 
directions still can produce good images. 
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B. Determine Vf and vp in Experiments 

Our simulation results in Fig. 10(c) and Fig. 11(c) show i 

that a 1% error in vj and vp will lead to minor blurring 
but that we still have enough definition to determine the 
configuration and location of the imaged objects. To de- 
termine vj and vP within 1% accuracy, we can try dif- 
ferent speeds around the averages, which arc 1437 m/s 
and 1546 m/s for fat and breast tissue, respectively, with 
a step size of 1% velocity. Optimum speeds can be de- 
termined by choosing the reconstructed image with the 
sharpest parenchyma wall, because errors in Vf and vv will 
cause the spread of this boundary. Because the variations 
of Vf and vv between individuals are about 2% and 4%, 
respectively, only 15 trials are needed to scan all the combi- 
nations. Furthermore, the backprojection method [12] can 
be used in each trial because the boundary of the recon- 
structed image can be recovered well with this method [34], 
[35]. Therefore, the additional computation cost in the tri- 
als is estimated to be only double the total computation 
complexity. 

C. Determine E in Experiments 
* 

There are two ways to obtain E. The first method uses 
only TAT signals. It takes advantage of the fact that fat 
and parenchyma have both acoustic and microwave con- 
trasts. A TAT image is first reconstructed with an acous- 
tically homogeneous model. Then an approximate E can 
be extracted from the image and plugged into an acousti- 
cally heterogeneous reconstruction model to obtain a more 
accurate TAT image. As shown in Fig. 6, the boundary- 
spread of the parenchyma wall in TAT images is at most 
7% of its real size (if a = 0.07) when an acoustically homo- 
geneous reconstruction model is used. Our studies of the 
effects on the reconstruction of the errors in the boundary 
profile, shown in Fig. 10(e) and Fig. 11(e), reveal that this 
level of error has little effect on the images reconstructed 
from a heterogeneous model. We intend to implement this 
method in our future work. 

The second method for determining E is the coregistra- 
tion of ultrasound B-scan imaging and TAT. In principle, 
this can be accomplished in the same set-up. The TAT 
data is acquired, then the transducers work in pulse-echo 
mode to determine an approximate S. This boundary in- 
formation can be included in the reconstruction algorithm 
of TAT. 

D. Differences Between TAT and UT 

The studies we presented in Section III show that there 
should be no severe amplitude distortion in breast TAT, 
but severe amplitude distortion caused by refraction has 
been observed in both narrowband and broadband breast 
UT [15]. The difference between the effects of acoustic het- 
erogeneity on TAT and UT can be explained by the dif- 
ferent central frequencies, hi UT, the central frequency 

is above 3 MHz, and in TAT the central frequency is be- 
low 1 MHz. The higher frequency in UT results in stronger 
wavefront distortion due to the following reasons. First, the 
scattering effect increases rapidly with frequency: second, 
the minimum detection distance for avoiding strong am- 
plitude distortion caused by an acoustic lens, which can be 
a boundary segment or a small inclusion, extends farther 
with increasing frequency. Substituting the following pa- 
rameters for UT, ISB, < 10 cm, X = 0.5 mm, and a = 0.07 
into (20), we have IßiD > 9-8 cm. We notice that the trans- 
ducer or array was placed closer than the required distance 
to the breast [15], [16]. Therefore, it is not surprising to 
observe the strong interference effect in UT. 

Another important difference between TAT and UT is 
that there is no speckle in our TAT images [11]. Speckle 
is an important factor limiting the quality of pure ultra- 
sonic imaging. In our technology, the detected signals are 
primary acoustic waves rather than reflective or scattered 
waves as in UT. Furthermore, the temporal frequency of 
the acoustic signals lies in a range from 0 to 1.5 MHz, 
which is only weakly scattered in the tissues. However, the 
issue of image speckle in more realistic medical imaging 
applications is a topic for future consideration. 

E. Miscellaneous 

Our analysis and numerical simulations have shown 
that breast TAT images can survive acoustic heterogene- 
ity. The ultimate test, however, will come from clinical ex- 
periments on the breast in which the motion artifacts due 
to breathing and cardiac movement may introduce blur- 
ring. Such blurring of images is estimated to be on the 
order of the movement amplitude. To correct the blurring, 
we can monitor the breast motion, for example, placing 
a microwave absorber on the breast surface as a marker. 
Then the data on the breast motion can be used in the 
reconstructions to shift the detectors' positions and, con- 
sequently, compensate for the breast's displacement. 

VII. CONCLUSIONS 

The effects of acoustic heterogeneity on TAT in the 
breast are studied. Our analysis shows that the ampli- 
tude distortion in the breast TAT is minor. There is no 
multipath interference in the breast TAT with a convex 
parenchyma wall, and the amplitude distortion also is not 
severe for concave boundary, because the TAT signals are 
broadband, have low central frequency, and experience 
only one-way transmission through the parenchyma wall. 
Therefore we consider only phase distortion in our numer- , 
ical studies. The numerical results on the spread of point 
sources and boundaries caused by the phase distortion are 
in good agreement with the predictions of the proposed 
formula. It is shown that phase distortion can be com- 
pensated for when complete or partial information on the 
distribution of acoustic velocity in the breast is included in 
the reconstruction. It is found that improvement in the re- 
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suits is more sensitive to measurement error in vj, vp than 
E. Based on this sensitivity study, an approach to imple- 
ment our compensation method using only TAT data is 
proposed. The differences between breast TAT and breast 
ultrasound imaging in relation to the effects of acoustic 
heterogeneity and speckles arc accounted for by differences 
in their central frequency of ultrasound and detection con- 
figuration. 

APPENDIX A 
DERIVATION OF (11) 

Assume that the concave boundary can be approxi- 
mated by an arch with a radius Ri > o, where a is half 
the size of the boundary segment. Two rays are refracted 
at points Bi and B2 in Fig. 4, where B% has a small dis- 
placement from B\ along the boundary. According to the 
refraction law, wc have: 

sin ox = (1 —a) sin 0i, 

cos 0\dOi = (1 — a) cos 6id4>\, 
(32) 

where d<j>i is the difference between the incidence angles 
of the two rays and d9i is the transmission one. They can 
be expressed as: 

V «BiD     / (33) 

where ISB, and IB^D are the distances from the boundary 
point #i to source S and detector D. respectively, and 
dö — IßiBi/Ri- Combining the above equations, we have 
the imaging formula for the boundary segment: 

+ cos2#i cos0i/(l -a) -cos0i 

ISBx      iDBt (1 - a) Ri (34) 

Because in our breast model a « 0.1 is small, the above 
equation can be further simplified to (11) after using &i ss 
01. 

APPENDIX B 
DERIVATION OF (30) 

The first iteration in TCG is equivalent to the back- 
projection method [34]. In backprojection for an acousti- 
cally homogeneous TAT, p(r, t), the signal detected at r 
and time t is projected back to a sphere with a radius of 
tvso and a center at r. It is shown that the boundaries of 
objects can be reconstructed correctly with the backpro- 
jection method [35]. Let us consider a model illustrated 
in Fig. 7 to estimate the spread of source S along line 
D\D2, where £>i and D? are two detectors, Si is the in- 
tersection of D1D2 with the backprojection arch of the 

signal transmitted by source S and detected by detector 
Di, 52 is the corresponding one at D2, and E represents 
the parenchyma wall. If there is no error in computing 
TOFs, Si, S2, and S will be one point; therefore, a point 
image of source S can be recovered. In an acoustically het- 
erogeneous model, however, the flight-time errors caused 
by the approximation of 'vp by vs0 in the reconstruction 
result in the splitting of Si and S2 from S, where lsts and 
lsss can be estimated by the multiplication of the flight- 
time errors with vso, h1s — IB,S(1 — vso/vp) = a/ß1s 
and ls2s = 'B2S(' - v$0/vp) = alß2s- Combining them, 
we have (30) for the spread width of source S along line 
DiZ>2- Similar analysis can be applied to estimating BSW 
as well. 
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An exact time-domain method is proposed to time reverse a transient scalar wave using only the field 
measured on an arbitrary closed surface enclosing the initial source. Under certain conditions, a time- 
reversed field can be approximated by retransmitting the measured signals in a reversed temporal order. 
Exact reconstruction for three-dimensional broadband diffraction tomography (a linearized inverse 
scattering problem) is proposed by time-reversing the measured field back to the time when each 
secondary source is excited. The algorithm is verified by a numerical simulation. Extension to the case 
using Green's function in a heterogeneous medium is discussed. 
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Time reversal of an acoustic or electromagnetic wave is 
based on the invariance of the wave equation in a lossless 
medium under the transform t—*-t (t represents the 
time). Time reversal of a wave can be understood as 
generating the back-propagation field from the measured 
forward-propagation field and/or its normal derivative 
after removing the initial sources. The concept of time 
reversal has been implemented experimentally and ap- 
plied to a wide range of studies such as inverse scattering 
[1], wave-front distortion correction [2,3], and multiple 
scattering phenomena [4]. 

However, no formula is available for computing the 
time-reversed (TR) field using only the measured field 
on a closed surface enclosing the initial source. When 
both the field and its normal gradient on a closed surface 
are available, there are formulas [3,5] to derive the TR 
field. However, it is not practical to measure both the field 
and its normal gradient simultaneously. For example, the 
output signal from a piezoelectric transducer is generally 
a complex combination of these two effects. There are two 
challenges in deriving the TR field using only the field 
First, it is not obvious that Green's function, which is 
widely used to derive the field in space from the field on a 
closed surface, can be applied here. This is because the 
TR field on the closed surface includes both diverging and 
converging components [3,5]. While the converging com- 
ponent of the TR wave is just the measured signals in the 
forward propagation in a reversed temporal order (RTO), 
the diverging component has no counterpart in the for- 
ward propagation and, consequently, is not available from 
measurement in general. Second, in a free space, retrans- 
mission of the measured signals in RTO from the detec- 
tion surface does not reproduce the TR field. This is 
because the waves retransmitted in one position propagate 
to the other positions on the surface and change the field 
there, and, consequently, the field on the surface does not 
equal the field in the forward propagation in RTO. 

In this Letter, we find that when time reversal is con- 
sidered in the time domain, an exact time-reversal 
method that uses only the field on an arbitrary closed 

PACS numbers: 42.30.Wb, 42.25.Fx 

surface can be derived for a wide variety of applications 
such as tomography with diffracting sources, inverse 
diffraction, and ultrasound therapy. Under certain condi- 
tions, a TR field can be approximated by retransmitting 
the measured signals in RTO in a free space. Acoustic 
waves are used as an example to present our results and 
methods, but their application to other scalar or vector 
waves is straightforward. 

Next, we show that exact reconstruction for broadband 
diffraction tomography (DT) in a weakly scattering me- 
dium can be essentially represented by a time-reversal 
process in a homogeneous medium. Although exact re- 
construction algorithms have been proposed for DT in 
some special geometries [6], no exact algorithm for 
broadband DT using only pressure measured on an arbi- 
trary closed surface has been proposed In the forward 
problem of our DT model, the objects [shaded in (Fig. 1)] 
are irradiated by an illuminating source of S(t)S(r - rs) 
at rs, and the scattered field is measured on an arbitrary 
closed surface 2 enclosing the objects to reconstruct their 
heterogeneity. This DT model is a single-view one; there- 
fore, it is very efficient for collecting data The total field 
p,(r, u>) in an acoustically heterogeneous medium is [7] 

p ((r, co) = pin(r, w) + / <friÄ:2y(ri)Ä(ri> w)Gw(r|ri), 
JR 

(1) 

where      Gjrlro) = exp(-/w|r - r0|/vs)/(4-7r|r - r0|), 

FIG. 1. Illustration of diffraction tomography. S represents 
the illuminating source, D represents a detector scanning 
across surface 2, and the to-be-imaged object is shaded. R 
and R are the spaces inside and outside 2, respectively. 
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pin(r, to) = Gw(r|ri)/27T is the temporal spectrum of the 
incidence field, u is the temporal angular frequency, k = 
to/vs, -y(r) = (K - K0)/K0 describes the normalized de- 
viation of compressibility K from the average K0, and vs is 
the acoustic speed corresponding to K0. Equation (1) can 
be rewritten as 

cp„(r,<w)= / drly(rl)pt(rhw)Gjr\rl)/vs,      (2) 
JR 

where <p„(r, co) = [pt(r, co) - piD(r, (o)]vjco2. Equation (2) 
shows that point ri of the objects can be considered as a 
secondary source y(ri)p,(rh co)/vs for <pn. In our recon- 
struction of DT, we first time reverse <p„ back to time 
te(r) = |r - rs\/vs at point r [te(r) is the time the sec- 
ondary source at r is excited] and then derive the hetero- 
geneity. Here, we first derive the formulas for time 
reversing a wave in a homogeneous medium and treat 
DT under first Born approximation (FBA), which involves 
replacing p,(ri> co) with pm(rh co) on the right-hand side 
of (2). Then the extensions to the case using Green's 
function in a heterogeneous medium are discussed 

We start from the wave equation for pressure p0(r, t) in 
a nonabsorbing and nondispersive medium [8] 

gr{r, f|r0, t0) = g_(r, f|r0, f0) ~ 8+(r, t\r0, t0), 

V2Po(r,t) 
1 d2

Po(r,t) 
v2     dt2 q(r, t), (3) 

where q(r, t) is the source term and is nonzero only in R 
[the space enclosed by the detection surface 2 (Fig. 1)] 
and within the time period [0, Ts\ We have 

p0{r, t)=  I ' dt0 I  dr0q(r0,t0)g+(r,t\r0,t0),      (4) 
Jo        JR 

where g±(r,f|r0>t0) = «50- r0 + |r-r0|/v5)/(47r|r-r0|) 
is a diverging (g+) or converging (g_) Green's function. 

Time reversal of p0(r, t) at time T0 is defined as 

pr(r, T0) = Po(r, T0),        p'r(r, T0) = -p0(r, T0),    (5) 

where the prime represents the temporal derivative in 
this Letter, pr(r, t) is the TR field of p0(r, t), and T0 is 
chosen to be large enough so that p0(r, t) = 0 for r £ 
R, t s T0. Then, pr{r, t) can be uniquely determined 
by the initial conditions at T0. The above definition of 
time reversal is analogous to the fact that a particle 
moves back along its trajectory if its velocity is reversed 
and its position is unchanged. According to this defini- 
tion, we mean pr(r, t) when we say time reversing a field 
back to time t, where a hat over a time variable f repre- 
sents 2T0 — t. 

In the case of a point source 8(r — r0)S(t — t0) 
in R, Eq. (5) becomes gr(r, T0\r0, t0) = g+(r, T0\r0, t0), 
g'r(r, T0\r0, t0) = ~g+(x, T0\r0, t0). It can easily be veri- 
fied that the TR field 

t^T0, 

(6) 

because it satisfies both the homogeneous wave equation 
and the initial-value conditions shown above. This result 
is also obtained by Cassereau [3] and Porter [5]. Equa- 
tion (6) shows that if we time reverse at T0, the field of a 
point source which is located at r0 and excited at t0, the 
TR field converges to r0 at time ?0> and then diverges with 
an opposite amplitude. The diverging wave g+(r, t\r0, i0), 
however, does not have a counterpart in the forward 
propagation. It exists because, unlike the forward propa- 
gation, there is no source inside 2 for gr(r, t). The diverg- 
ing wave with an opposite amplitude exactly cancels the 
source term related to the converging one. 

In the case of an arbitrary source, similar results can be 
obtained after considering the linearity of the wave 
equation with respect to the source 

Pr(r, t) 
Jo        JR 

droq(r0, t0)gr(r, t\r0, t0).     (7) 

After substituting (6) into (7), using g_(r, f|r0> t0) = 
g+(r, —t\rQ, —t0), and variable transform, we have for 
rd E 2 (although it is valid for any r) 

pr(rd, t) = p0(rd, 2T0 - t) + pdW(rd, t), (8) 

P& 
f2T0 f 

Xrd, t) = - dt0 
J2T0-TS        JR 

dr0q(ro,to)g+(rd't\r0,t0)- 

(9) 

As in the case of a point source, the diverging component 
Pdi\(rd> t) has no counterpart in the forward propagation 
and is, in general, not available from the experimental 
measurements of p0 except in some special cases. 
Nevertheless, we show that pr(r, t) before a specified 
time can be derived using only poi*d> *)• 

Since there is no source for pr(r, t) and pr(r, T0) = 0 
in R, pr(r, t) in R can be expressed in terms of the field on 
2 [9]: 

pr(r, t) -   ' dt0 i 
JT0      Jt 

dSdpr(rd, t0) 
dgi(r,t\rd,t0) 

dn 

(10) 

where d/dn is the derivative along the normal of 2 at rd 

pointing away from the volume R, gi(r, t\r0, t0) with 
r, r0 G (R U 2) is Green's function subject to the homo- 
geneous Dirichlet boundary condition on 2 [10], and t+ is 
infinitesimally greater than t. Here, we show that 
pro(r, t), the contribution of pdiv(rd, t0) to the right-hand 
side of (10), is zero before a specified time. After insert- 
ing (9) into (10), we have 

dgi{r,t\rd,t0) Pro(r>t)=    ' dt0i dSd j dtc      drcq{rc,ic)g+(rd,t0\rc,tc) 
JTO       H       J2T0-TS      JR on 

Considering g+(rd, t0\rc, tc) = 0 when t0<tc + \rc - rd\/vs and gjOr, t\rd, t0) = 0 when t < t0 + |r 
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assuming that q{rc, tc) is nonzero only within the period 
[tCh tci\ we conclude that pro{r, t) = 0 if for any rc G R 
and rd G 2 

t<2T0- tc2 + |rrf - rc\/vs + |r - rd|/v, (12) 

Actually, /v0(r, f) can be shown to be equivalent to the 
field induced by the reflection of the diverging field 
pdiv(r, t) by 2. It contributes only to the late part of 
pr(r,t). In many applications including tomography 
with diffracting sources and ultrasound therapy, we are 
interested only in the part of pr(r, t) within the range 
defined by (12). For example, in our DT model, the 
heterogeneity at point r in Fig. 1 can be derived from 
pr(r, ie(r)), as is shown in (17). Noticing \te(r) - te{rc)\ < 
|r - rc\/vs and tcX = tc2 = te(rc), we find that (12) is 
minimally observed for any rc G R and rd G X to com- 
pute pr(r, ie(r)) in DT. Similarly, we find that (12) can 
easily be met for other applications such as thermoacous- 
tic tomography and ultrasound therapy. Therefore, 
pr(r, t), within the range defined by (12), can be ex- 
pressed as 

pr(r,t) = - i   dtQA> dSdPo(rd, 
JT0       JZ 

? .dgi(r, t\rd,t0) 
dn 

(13) 

Equation (13) shows that the TR field before a certain 
time in R is equivalent to the field [caused by the retrans- 
mission of po(rd, i) from 2 in RTO] in a reflective cavity 
(formed by 2) rather than in a free space. Therefore, the 
reflections from 2 also contribute to pr(r, t). The reason is 
that the field transmitted in one position on 2 propagates 
to the other positions on 2, and, consequently, the field in 
these positions changes. The reflections from 2 cancel the 
changes in these positions. 

Next, we show that the reflections from 2 are negli- 
gible under certain conditions. The central concept is that 
g i (r, 11 rd, tQ) can be obtained in a model where the bound- 
ary 2 serves as a perfect mirror (with a phase shift of ir 
after reflection), and a delta pulse source is launched at rd 

and time t0. Under the ray approach (geometrical optics 
approximation), gi(r, t\rd, t0) is the summation of the 
contributions from all the rays that go from rd and arrive 
at r if the radii of 2 are much larger than the wavelength 
of the excitation pulse. As shown in Fig. 1, the first ray 
from rd to r travels along the line connecting rd and r. 
The second ray is first reflected by the boundary at rd 

and then goes to r. Both of them arrive at r at time t0 + 
|r - rd\/vs. The contribution of the first two rays to 
dgi/dn in (13) is 2dg+/dn. Then there are other rays 
(for example, the dashed line in Fig. 1) that are reflected 
at other points on the boundary such as A. In DT, it can be 
shown that when the to-be-reconstructed point r is near 
the center of 2, and Zdet > 2/obj, where /det is the average 
linear dimension of 2 and Zobj is the maximum linear 
dimension of the object, pr(r, ie(r)) can be approximated 
well after replacing dgi/dn in (13) with 2dg+/dn [11] 

033902-3 

Pr(r, i) « -2 j    dt0 j dSdp0(rd, t0) 
..dg+Mr^fo) 

dn 

(14) 

Equation (14) shows that under certain conditions, time 
reversal can be approximated well by retransmission of 
the measured signals in RTO from the detection surface 
in a free space. Equation (14) also holds for applications 
other than DTwhen an appropriate Zdet is chosen by using 
the demonstrated method for DT. Equation (14) can be 
transformed into 

(A      1   I ^c n • (rrf - r) [Po(rd, trd) 

(15) 

where trd = 2T0 - t + |r - rd\/vs. Equation (15) is in 
the form of the well-known delay-and-sum algorithm 
(backprojection to spheres) used in synthetic aperture 
imaging. Consequently, the physical meaning and the 
valid conditions of this widely used algorithm are re- 
vealed quantitatively for the first time from basic physics. 

Now we discuss the reconstruction in DT. In the for- 
ward propagation, the secondary sources (the points of 
the objects) are not excited at the same time, since the 
incidence wave reaches different points at different times. 
Therefore, in theTR field, the diverging waves from some 
secondary sources mingle with the converging waves 
from other secondary sources according to (6). Never- 
theless, we show that there is a strikingly simple relation- 
ship between the TR field and the heterogeneity under 
FBA. After combining (2), (6), and (7) and the applica- 
tion of inverse Fourier transform, the TR field of <pn(r, a>) 
at time ie(j) is 

<pnr(r, ?») = / driy(ri) 
JR 

X /     dkexp(-ik\r-rs\)pt(rh -co) 
J —00 

X [GL(r|r,) - G„,(r|r,)l    (16) 

where * represents the complex conjugate. After applying 
FBA and some mathematical manipulations, we have 

y(r) = 4 
fl[|r - rs\(pnr(r, ?»)] 

d|r-r,| 
(17) 

Therefore, the reconstruction in DT can be implemented 
by first time reversing ip„ to obtain <pnr(x, ie(r)) with (13) 
or (14), and then obtaining y(r) with (17). 

A three-dimensional DT is numerically simulated 
(Fig. 2). The object is a sphere with a radius of 8 mm 
at the origin, and to validate FBA, y(r) is set to be 0.01 
in the sphere and zero otherwise [12], and vs is 1.5 km/s 
in the background. The illuminating source is at 
[0, 64, 0] mm. The 8192 detection positions are randomly 
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FIG. 2. (a) Reconstructed image section in DT along the 
y = 0 and (b) x = 0 planes, (c) The line graphs along the 
z = 0 (dotted line), y — 0 (dashed line) lines in (b) and 
the corresponding real value (solid line). The object values 
are normalized to 0.01. 

distributed over an ellipsoid with three axes of [80, 64, 
80] mm long and the center at the origin. The imaging 
space is a cube with a side length of 64 mm, centered at 
the origin, and mapped with a 128 by 128 by 128 mesh In 
the forward problem, <p„(r, f) is computed by the integra- 
tion of the object value along a series of ellipsoids. The 
signals are within [01.5] MHz. In the inverse problem, we 
use (15) instead of the exact formula (13) to time reverse 
fields to save computation time. We swap the order of (17) 
and the integration in (15) to improve the computation 
accuracy. Figures 2(a) and 2(b) show that the shape and 
position of the object are reconstructed correctly. The line 
graphs in Fig. 2(c) show that the object is reconstructed 
quantitatively. There are some shadows from the object 
along the line (y axis) connecting the source and the 
object in Fig. 2(b). The shadows rotate when the position 
of the source changes. The shadows are probably caused 
by the limited bandwidth of the simulated signals. They 
can be eliminated if the illuminating source is placed in 
several positions and multiple sets of data are collected. 

Our time-reversal methods are derived for waves in a 
homogeneous medium. The extension of most of them to a 
heterogeneous medium is straightforward Equations (4)- 
(10) hold for a heterogeneous medium after Green's 
function is replaced by the corresponding one in a hetero- 
geneous medium. In addition to replacing Green's func- 
tion, vs in (12) should be understood as the maximum of 
the acoustic speed in the medium to extend (11)—(13). 
Equation (14) can be extended after the minimum re- 
quirement for /det is estimated This estimation is more 
complex in a heterogeneous medium, since Green's func- 
tion in a heterogeneous medium is usually a wave train 
rather than a delta pulse. To proceed from (14) to (15), we 
need to replace |r - rd\/vs in (15) with tf(r, rd), the flight 
time from r to rd, and assume that the heterogeneity 
changes only the flight time of a transient wave. 

FBA is used in our discussion about DT. We realize that 
FBA does not hold for high frequencies. However, if we 
confine the frequency response range of the ultrasound 
transducer to the low-frequency range, FBA stands 
approximately. Alternatively, we can improve FBA by 

applying a distorted-wave Born approximation and time- 
reversal methods using Green's function in a heteroge- 
neous medium. At last, it should be pointed out that our 
time-reversal methods can be easily applied to inverse 
diffraction, inverse source problems, and other tomogra- 
phies using a diffracting source such as thermoacoustic 
tomography. 
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Optical contrast agents have been widely applied to enhance the sensitivity and specificity of optical imaging 
with near-infrared (NIR) light. However, because of the overwhelming scattering of light in biological tis- 
sues, the spatial resolution of traditional optical imaging degrades drastically as the imaging depth increases. 
Here, for the first time to our knowledge, we present noninvasive photoacoustic angiography of animal brains 
in vivo with NIR light and an optical contrast agent. When indocyanine green polyethylene glycol, a novel ab- 
sorption dye with prolonged clearance, is injected into the circulatory system of a rat, it obviously enhances the 
absorption contrast between the blood vessels and the background tissues. Because NIR light can penetrate 
deep into the brain tissues through the skin and skull, we are able to successfully reconstruct the vascular 
distribution in the rat brain from the photoacoustic signals. On the basis of differential optical absorption 
with and without contrast enhancement, a photoacoustic angiograph of a rat brain is acquired that matches 
the anatomical photograph well and exhibits high spatial resolution and a much-reduced background. This 
new technology demonstrates the potential for dynamic and molecular biomedical imaging. © 2004 Optical 
Society of America 

OCIS codes:   170.5120, 170.3880, 170.0110, 170.1470. 

The high sensitivity of optical imaging modalities 
aided by contrast agents parallels that of nuclear 
imaging and allows the visualization of organs such as 
the brain without the undesirable effect of ionizing ra- 
diation. Indocyanine dyes, with strong absorption in 
the near-infrared (NIR) spectra, are especially useful 
because NIR light has low absorption in biological tis- 
sues and consequently has relatively deep penetration. 
For example, indocyanine green (ICG), which has 
been approved by the Food and Drug Administration, 
in combination with NIR techniques, is employed 
widely in clinical applications such as cardiac output 
monitoring,1 hepatic function study,2 angiography 
in ophthalmology,3 and tumor detection.4 However, 
because of the strong scattering nature of biological 
tissues in NIR, pure optical imaging techniques, 
whether diffuse optical tomography, fluorescence 
imaging, or other microscopies, cannot provide high 
spatial resolution beyond the skin. The photoacoustic 
imaging technique, which has the merits of both light 
and ultrasound, has been proved to be a powerful 

tool for visualizing biological tissues with satisfactory 
sensitivity and spatial resolution.5"10 In this study, 
distributions of NIR absorption in biological tissues 
that were modified by an optical contrast agent were 
imaged with the photoacoustic modality. With this 
technique we successfully achieved noninvasive photo- 
acoustic angiography—mapping of the vasculature— 
in the cortex of rat brains in vivo for what appears to 
be the first time. 

The setup for noninvasive photoacoustic angiogra- 
phy of rat brains is shown in Fig. 1(A). A tunable 
dye laser (ND6000, Continuum) pumped by a Nd:YAG 
laser (Brilliant B, Bigsky) was employed to provide 
laser pulses with a FWHM of 6.5 ns, a pulse repetition 
rate of 10 Hz, and a wavelength of 805 nm. The inci- 
dent energy density of the laser beam was controlled 
to <2 mJ/cm2 on the surface of the rat head, which in- 
duced a temperature rise in the brain vessels estimated 
to be <2.6 mK. An unfocused ultrasonic transducer 
(XMS-310, Panametrics) with a central frequency of 
10.4 MHz, a bandwidth of 100% at -6 dB, and an 
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Fig. 1. (A) Schematic of noninvasive photoacoustic angiog- 
raphy in the rat brain, employing an optical contrast agent 
and a NIR laser. (B) Absorption spectra of ICG-PEG and 
native ICG. (C) Intensity of the photoacoustic signals 
from the blood vessels in the median fissure of the rat 
brain as a function of time after the intravascular injection 
of ICG-PEG (circles) or native ICG (triangles), which are 
normalized to the initial intensity of the photoacoustic 
signals before the injection.   PA, photoacoustic. 

active element of 2 mm in diameter was used to detect 
the photoacoustic signals. The transducer was driven 
by a computer-controlled step motor to scan around the 
cortex of the rat brain in the x-y plane with a radius 
of 3 cm and a step size of 1.5°. The data acquisition 
time for one image was 23.5 min. 

The rat was fixed by use of a homemade mount with 
its head protruding into the water tank through a hole 
in the bottom of the tank where a piece of clear polyeth- 
ylene film between the water and the rat head sealed 
the hole. A thin layer of ultrasonic coupling gel was 
applied on the surface of the rat head. The photo- 
acoustic signals detected by the transducer were re- 
ceived by an amplifier and then sent to an oscilloscope. 
Finally, a computer collected the digitized signals to re- 
construct the distribution of optical absorption in the 
imaging plane through a modified backprojection algo- 
rithm.11 Sprague Dawley rats (~ 150 g, Charles River 
Breeding Laboratories) were employed for the imaging 

experiments. Before imaging, the hair on each rat's 
head was removed with hair remover lotion. A dose 
of 87 mg/kg Ketamine plus 13 mg/kgXylasine was ad- 
ministered intramuscularly to anesthetize the rats dur- 
ing the data acquisition. 

The optical contrast agent was injected into the 
circulatory system of the rats through the tail 
vein. To prolong the circulation of ICG in blood, 
polyethylene glycol (PEG),12 a polymer approved 
by the Food and Drug Administration with the 
structure (-CH2CH20-)n, was adopted to stabilize 
the ICG. This PEG conjugate of ICG (ICG-PEG) 
with high optical absorption near the 805-nm wave- 
length [see Fig. 1(B)] was used as a contrast agent 
in photoacoustic tomography for the first time to our 
knowledge. The ICG-PEG in phosphate buffered 
saline (pH = 7.4; concentration = 3.2 X 10~4 M) was 
injected intravenously at a dosage of 0.25 ml/100 g 
body weight, which led to an estimated ICG con- 
centration of ~1 X 10~5 M in the blood. With this 
ICG-PEG dosage and the applied laser energy density 
for this experiment, the magnitude of the photo- 
acoustic signals received by the ultrasonic transducer 
was of the order of 10 fiV. Considering the 60-fim 
resolution that has been achieved by this system (to 
be reported elsewhere), the number of molecules in 
the 60 fim X 60 fim X 60 /an resolvable volume is 
~2 fmol, which represents an underestimate of the 
sensitivity of our imaging system. 

By observing the changes in the intensity of the 
photoacoustic signals from the brain vessels, we 
studied the time-dependent variation of absorption 
in the brain blood attributable to the contrast agent 
[Fig. 1(C)]. The results represent the clearance pro- 
file of the dye from the circulatory system of the rat, 
where ICG-PEG shows an obviously slower clearance 
than the native ICG. 

Photoacoustic angiographs of rat brains in situ 
based on either the intrinsic contrast or the ICG-PEG 
enhanced contrast were compared. The contrast 
between the large blood vessels and the background 
tissue was approximately 1.8:1 without the contrast 
agent. The contrast was enhanced to 2.8:1 by the 
ICG-PEG at the applied dosage. 

ICG-PEG was applied to noninvasive photoacoustic 
angiography in the rat brain in vivo (Fig. 2). After 
the experiment, the rat recovered normally without 
noticeable health problems. Compared with the 
reference image in Fig. 2(A), the image in Fig. 2(B), 
obtained after the injection of ICG-PEG, represents 
a clearer map of the brain vascular branches that 
matches well with the photograph of the anatomy. 
Figure 2(A) was subtracted from the image with 
contrast enhancement in Fig. 2(B). The differen- 
tial image in Fig. 2(C) depicts the distribution of 
differential optical absorption in the rat brain that 
is attributed to the injected contrast agent. This 
subtraction reduces the background and further 
enhances the contrast of blood vessels in rat brains. 
Some detailed brain vascular structures that cannot 
be visualized from the image in Fig. 2(B), such as the 
small vessel branches identified by the black arrows 
in the figure, were revealed by this differential image. 
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Fig. 2. Noninvasive photoacoustic images of a rat brain 
in vivo, employing NIR light and an optical contrast agent 
(ICG-PEG). (A), (B) Photoacoustic images acquired before 
and after the injection of ICG-PEG, respectively, where 
the two gray scales are the same.   MF, median fissure. 
(C) ICG-based angiograph of the rat brain (C = B - A). 
(D) Open-skull photograph of the rat brain obtained after 
the data acquisition for photoacoustic imaging. 

More important, this experiment demonstrated the 
potential of photoacoustic tomography for dynamic 
and molecular imaging. 

A circular scan of even an unfocused transducer was 
able to produce high-quality images of the cerebral cor- 
tex for the following reasons. Most large blood vessels 
are distributed in the brain cortex. The photoacous- 
tic signals that originated from the strong optical 
absorption in the vasculature of the dorsal cerebral 
cortex were dominant. Conversely, the photoacoustic 
signals from the large vessels in the ventral brain 
were relatively small because of the attenuation of 
light in the brain. In addition, the aperture effect 
of the ultrasonic transducer provided some resolution 
along the z axis. 

Images obtained with this setup represent a distri- 
bution of the averaged optical absorption during the 
data acquisition. In this case the applied contrast 
agent with a prolonged clearance time benefits the 
acquisition of imaging signals, especially when several 
images need to be acquired with the current imag- 
ing system after the intravascular injection. When 
an ultrasonic transducer array, instead of a single- 
element transducer, is adopted in the future, this 
technology will provide real-time and more accurate 

quantitative monitoring of the brain hemodynamics. 
Consequently, the clearance time will not need to 
be prolonged in that case. The in vivo dynamics of 
the exogenous dye can provide useful physiological 
information. 

In summary, angiography in the rat brain yielding 
high contrast and high spatial resolution based on the 
photoacoustic imaging of exogenous contrast agents 
has been implemented noninvasively. This technique 
provides an accurate noninvasive monitoring method 
for fluid pathways in biological tissues, which makes 
it a powerful method for imaging vascular changes in 
tumors, delineating neovascularization, and studying 
global and regional hemodynamic activities in the 
brain. Since the contrast agent is expected to accumu- 
late in neoplastic tissues or traumatized regions, this 
technique is promising for determining the margins 
of embedded tumors or bruises with a high degree 
of accuracy. More important, since contrast agents 
can be conjugated to bioactive peptides, proteins, 
antibodies, hormones, drugs, or other bioactive agents, 
this technique can be readily extended to molecular 
and functional imaging. For example, with high- 
frequency ultrasonic detection and tumor-targeted op- 
tical contrast agents, this technique offers promise for 
imaging pathologic processes at molecular and genetic 
levels. All these objectives can be accomplished by 
virtue of the high optical contrast and high ultrasonic 
resolution that this technique provides. 

This study was sponsored in part by the National 
Institutes of Health, the Department of Defense, the 
National Science Foundation, and the Texas Advanced 
Research Program. L. Wang's e-mail address is 
LWang@tamu.edu. 
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The limited-view problem is studied for thermoacoustic tomography, which is also referred to as 
photoacoustic or optoacoustic tomography depending on the type of radiation for the induction of 
acoustic waves. We define a "detection region," within which all points have sufficient detection 
views. It is explained analytically and shown numerically that the boundaries of any objects inside 
this region can be recovered stably. Otherwise some sharp details become blurred. One can identify 
in advance the parts of the boundaries that will be affected if the detection view is insufficient. If 
the detector scans along a circle in a two-dimensional case, acquiring a sufficient view might 
require covering more than a IT-, or less than a 7r-arc of the trajectory depending on the position of 
the object. Similar results hold in a three-dimensional case. In order to support our theoretical 
conclusions, three types of reconstruction methods are utilized: a filtered backprojection (FBP) 
approximate inversion, which is shown to work well for limited-view data, a local-tomography-type 
reconstruction that emphasizes sharp details (e.g., the boundaries of inclusions), and an iterative 
algebraic truncated conjugate gradient algorithm used in conjunction with FBP. Computations are 
conducted for both numerically simulated and experimental data. The reconstructions confirm our 
theoretical predictions. © 2004 American Association of Physicists in Medicine. 
[DOI: 10.1118/1.1644531] 

Key words: thermoacoustic tomography, photoacoustic tomography, optoacoustic tomography, 
local tomography, limited view, incomplete data 

I. INTRODUCTION 

A correlation between the electromagnetic absorption of a 
biological tissue and its physiological and pathological fea- 
tures is reported.1-4 To employ this contrast mechanism, 
thermoacoustic tomography (TAT), in which the thermoa- 
coustic signals from a tissue sample are collected to map the 
distribution of the radiation absorption within the sample, 
has been developed to image biological tissue.5-9 TAT, which 
is also referred to as photoacoustic or optoacoustic tomogra- 
phy (depending on the type of radiation used), combines 
good imaging resolution with good imaging contrast. 

As it will be shown below, TAT signals can be represented 
in terms of a known circular radon transform. There exist 
explicit reconstruction formulas for this transform when data 
are collected along a line or a full circle in a two-dimensional 
(2-D) case and along a plane, sphere, or a cylinder in a three- 
dimensional (3-D) case.10-15 In all these cases it is assumed 
that the imaged objects are located either on one side of the 
scanning line (plane), or inside the scanning circle (sphere, 
cylinder), without which assumption reconstruction is not al- 
ways possible. The available inversion formulas employ ei- 
ther special-function expansions, or backprojection in the 
case of the linear or planar data-acquisition geometry. 

Exact reconstruction algorithms for TAT based on series- 
expansion techniques are implemented in planar, spherical, 
and cylindrical configurations.5"7'16 Following the line of 

Nortan,17 an approximate modified backprojection algorithm 
has been developed from an exact 3-D model.6 Other back- 
projection algorithms are also proposed.8'18 In these algo- 
rithms for TAT, it is assumed that the thermoacoustic signals 
are detected in a full (panoramic) view. In other words, the 
detector moves along a whole circle in the 2-D case or 
sphere in the 3-D case. This means in particular that each 
point of the scanned object is visible from the detector's 
trajectory for 2ir radians in the 2-D case or 47r steradians in 
the 3-D case. However, in many applications of TAT, the 
signals cannot be collected from all directions. For example, 
the solid angle of detection is at most 2ir steradians for a 
breast. So, one faces here an incomplete data problem. Al- 
though one can show that theoretically an arbitrarily small 
scanning arc (i.e., the arc of a circle over which the detectors 
move) suffices for the uniqueness of recovery,22 in practical 
implementations the limited-view problems usually lead to 
losing some parts of the high-frequency information and 
hence blurring of some sharp details. 

In this paper, we present our results on the limited-view 
TAT. Although limited-view problems have been studied ex- 
tensively in x-ray tomography,19 diffraction tomography,20 

and reflectivity tomography,21 to the best of our knowledge, 
no results on the limited-view TAT have been published. In 
the methods section, a formula for the forward problem is 
presented. In particular, it is shown that the TAT signals can 
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be represented in terms of a known circular radon transform. 
This enables us to employ the known results that justify the 
theoretical possibility of reconstruction.22 Then results by 
Quinto and Louis developed for sonar are applied to deter- 
mine the "stably visible" parts of the objects in TAT.23 In 
particular, a piece of the boundary of an object (i.e., inter- 
faces between objects) can be stably reconstructed as soon as 
at any point on the boundary at least one of its two normal 
directions passes through a detector position. On an intuitive 
level, this is because an arbitrary interface can be considered 
as a combination of small flat interface segments, and each 
segment transmits acoustic waves identically in the two op- 
posite directions perpendicular to the interface segment. This 
means that we need to collect signals at only one of the two 
directions to obtain information about the boundary segment. 
More complicated sharp details ("singularities") could be 
considered as well, which would entail using the notion of a 
wavefront of a function and other tools of microlocal analy- 
sis. However, among all possible singularities, tissue inter- 
faces are of the most interest for TAT. 

Exact reconstruction formulas for the limited-view TAT 
are not yet known. We derive an approximate filtered back- 
projection (FBP) algorithm that works well quantitatively. A 
version of this method that emphasizes singularities [a "local 
tomography" (LT) reconstruction] is also tested. The FBP 
results are then iteratively improved using a truncated con- 
jugated gradient (TCG) method. Besides using numerical 
phantoms for calculations, we also conducted experimental 
measurements on physical phantoms and applied our recon- 
struction methods to the obtained data. The results of all 
these reconstructions confirm our theoretical predictions. 
These are addressed in the Sec. III. 

II. METHODS 

A. Formulas for the forward problem 

We begin by presenting the forward problem for an acous- 
tically homogeneous model. In the case of thermal confine- 
ment, the spectrum of the acoustic wave pressure p{r,k) at a 
detector position r is related to the spatial distribution of 
electromagnetic absorption <p(r'),5 

Plr,k) = 
ivsßl0krf{k) 

X 

4TTC 

«P(r') 
exp(-z'Ä:|i—r'l/iO 

r—r 
dr'. (1) 

Here k is the angular frequency with respect to t; vs is the 
acoustic speed; C is the specific heat; ß is the coefficient of 
volumetric thermal expansion; I0 is a scaling factor propor- 
tional to the incident radiation intensity; <p(r') describes the 
to-be-reconstructed electromagnetic absorption property of 
the medium at r'; and p~{r,k) and rf{k) are the temporal 
Fourier transforms of the pressure p{r,t) and the shape of 
the irradiating pulse rj{t), respectively. 

Defining p~l{r,k)=p{r>k)lrj{k)   and  applying  inverse 
Fourier transform, one obtains 

P\(r,t) = 
vsßh * 
ATTC dt 

<p(r') 
r-r 

dr', (2) 

where Pi(r,t) is the deconvolution of p(r,t) with respect to 
the profile of the electromagnetic pulse and can be inter- 
preted as the detected pressure when the electromagnetic 
pulse is a delta (impulse) function. The physical meaning of 
this equation is that, in an acoustically homogeneous me- 
dium, the pressure p\ at a spatial point r and time / is pro- 
portional to the time derivative of the integral of the ab- 
sorbed electromagnetic energy over a spherical surface (a 
circle in the 2-D case) centered at r and with a radius of tvs: 

\r-r'\ = tvs. (3) 

2-D TAT is studied in our numerical simulations and ex- 
periments. It should be pointed out that 2-D TAT is valid for 
experimental configurations where thermoacoustic sources 
are approximately located within a thin slab or the ultrasonic 
transducers are cylindrically focused to select thermoacoustic 
sources from a thin slab. 

B. Analysis of singularities in circular radon 
transform and limited-view TAT 

1. Circular radon transform 

It can be seen from Eq. (2) that p\{r,t) can be obtained 
from <p(r') after applying three linear operations: circular 
(spherical in 3-D) radon transform R, multiplication by Mt, 
and differentiation D, with respect to /. The circular radon 
transform defined as 

Rq»(r,f) = <p(r')dr' (4) 

Hr-r>s 

is similar to the conventional linear radon transform, except 
that the integration here is over a circle or a sphere rather 
than a line or a plane. In this paper, the set X of centers r of 
the circles (spheres) of integration coincides with the set of 
positions of the detector, and the set of radii (that are propor- 
tional to time t) is unrestricted. We call these circles 
(spheres) "projection curves" ("projection surfaces") and 
the set X the "scanning curve" (or "detector curve"). We 
assume that the source function <p(r) is zero outside 2 and in 
a neighborhood of X. In other words, the scanned object is 
strictly inside the scanning detector trajectory X. In this case 
it is known that data collected from an arbitrarily small arc of 
the detector trajectory are theoretically sufficient for a com- 
plete reconstruction.22 This result, however, neither provides 
reconstruction algorithms, nor guarantees that the reconstruc- 
tion can be achieved in any practically stable manner. In- 
deed, it is well known that solving incomplete data problems 
usually leads to operations like Fourier filtrations with fast 
growing filters,15 which implies high sensitivity to errors in 
data. This in turn requires cutting high frequencies and hence 
blurring the images. Sacrifices in high frequencies naturally 
lead to destroying sharp details (interfaces between different 
tissues) in the reconstruction. The question of what parts of 
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FIG. 1. Wavefront WS(ip) of an image <p consisting of pairs (r',f), where 
point r' belongs to L (a jump interface in the image) and £ is a nonzero 
vector normal to L at r'. 

(a) <b) 

FIG. 2. (a) An illustration of the "detection regions" (shaded areas) of cir- 
cular radon transform, when the detector moves along a single arc (solid) of 
a circle, (b) Two arcs, (c) Three arcs. 

the singularities (i.e., sharp details) of the image can be sta- 
bly reconstructed depending on the scanning geometry is ad- 
dressed for the planar radon transform,24 and for the circular 
one in connection with sonar.23 Local tomography recon- 
structions also address similar issues.25"28 

2. TAT 

We would like to note that in Eq. (2) the presence of a 
temporal derivative in the TAT data (which is equivalent to a 
radial derivative after the circular radon transform) can only 
emphasize singularities and hence should not lead to addi- 
tional blurring in comparison with the circular radon trans- 
form itself (this can be shown rigorously). In fact, as it will 
be seen later in this paper, this derivative is a natural part of 
the reconstruction procedure for the circular radon transform. 

We will now apply to TAT the known results of integral 
geometry concerning singularity reconstruction.23'24 The ex- 
act description would require the notions of microlocal 
analysis, in particular the one of a wavefront set of a 
function.23,24 However, in tomographic problems, in particu- 
lar in TAT, one is mostly interested in only one type of sin- 
gularity: the jump of the imaged value <p across an interface 
(a curve in 2-D or a surface in 3-D). Assuming that <p is 
smooth except for a jump across a curve L in the plane (the 
3-D situation is analogous with L being a surface), then the 
wavefront WS(tp) of <p consists of pairs (r',£) where point 
r' belongs to L and £ is a nonzero vector normal to L at r' 
as shown in Fig. 1. 

Now Louis' results can be summarized as follows:23 one 
can identify that a pair (r',£) belongs to the wavefront set of 
the image by looking at the singularities of the radon data if 
and only if among the circles (spheres) of integration ("pro- 
jection curves") there exists at least one passing through the 
point r' and normal to f at this point. To put it differently, in 
TAT one can see without blurring only those parts of the 
interfaces that one can touch tangentially by circles (spheres) 
centered at detector positions. This means that one needs to 
have a detector located on the normal to L at r' in either 
direction. 

What happens to other, "invisible" parts of the interfaces? 
We provide here a nontechnical explanation. One would 
need to recover these singularities from smooth parts of the 
measured data. This in turn means the involvement of opera- 
tions like nitrations in the frequency domains with filters 
growing faster than any power. In order to avoid instabilities 

then, this clearly requires cutting those frequencies off, 
which causes blurring. The conclusion is that the "visible" 
parts of the interfaces should be possible to recover, while 
the others should blur independently of the reconstruction 
method used. A discussion of the related issues of stability of 
reconstruction would be too lengthy; one can find the rel- 
evant considerations in the literature.29 In a nutshell, more 
stable tomographic problems allow one to estimate the error 
in the reconstruction (in a Sobolev norm) by the error in the 
data in a somewhat smoother norm. This, however, is impos- 
sible when the information about the wavefront is lost. 

Let us make this geometry more explicit for our circular 
(spherical) trajectory of detectors. We pose the following 
question: Assume that only a part of the detector circle 
(sphere) is used for collecting data; at what locations then, all 
interfaces in the image will be completely recoverable? We 
will call the set of all such "good" locations the "detection 
region." For images outside this region, one needs to apply 
the tangent-circle test as described in the preceding two para- 
graphs to predict what parts of the boundaries will not be 
stably recoverable. 

Assuming first that the detector moves along a single arc 
of the circle [Fig. 2(a)], then simple geometric consideration 
shows that the "detection region" is just the convex hull of 
this arc (i.e., the circular cap based on the arc). Here the 
"detection region" is shaded, and the arc of the circle where 
we do not position a detector is shown as a dotted line. 
Analogously, one can find the "detection region" (shaded) 
for two arcs [Fig. 2(b)]. The situation changes, however, for 
more complicated scanning trajectories. For instance, in the 
case of three arcs, one can have more than just circular caps 
in the "detection region" [Fig. 2(c)]. Here an additional tri- 
angular part of the "detection region" appears in the center. 
The situation can become even more complicated for spheri- 
cal 3-D geometry. The general rule for finding the "detection 
region" is as follows: draw all lines such that both of their 
intersection points with the scanning circle (sphere) do not 
coincide with detector locations. These lines cover the "in- 
visible" domain, so its complement forms the "detection re- 
gion." Note that in the "invisible" domain some boundaries 
can still be recovered stably, while others blur away. Namely, 
the parts of the boundaries the normal lines to which pass 
through a detector position, and only those can be stably 
recoverable. The above conclusions are illustrated in Fig. 3, 
where the "invisible" parts of the object boundaries, i.e., the 
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FIG. 3. (a) "Visible" (solid line) and "invisible" (dashed) boundaries of a 
square object, and the "detection regions" (shaded areas) when the detector 
moves along an arc (solid), (b) The same as (a) for a disk phantom, (c) The 
same as (a) except that the detector moves along the line segment AB and 
the objects are a square and a disk. The "visible" boundaries are expected to 
be recoverable stably, while the "invisible" boundaries should be blurred 
away. 

ones to be blurred during the reconstructions, are shown with 
dotted lines. For instance, in Fig. 3(a) one has a cap "detec- 
tion region" and a rectangular object that does not fit fully 
into it. Then one expects the dotted parts of the rectangle's 
boundary to be affected by blurring artifacts during the re- 
construction. Figure 3(b) shows the expected reconstruction 
of a circular object located outside the "detection region." 
Let us remark that similar considerations apply to an arbi- 
trary scanning geometry. For instance, Fig. 3(c) shows the 
parts (solid) of the boundaries of a circular and a square 
object that can be stably reconstructed from the detection on 
a segment AB. 

C. Reconstruction methods 

As it has already been mentioned before, exact inversion 
procedures are known for circular and spherical radon trans- 
forms in some special detection configurations.10""15 How- 
ever, for the circular trajectories of detectors only special- 
function-expansion methods are known, while formulas of 
the FBP type are available for the linear (planar) trajectories. 
Our approach is to use an approximate FBP formula, which 
happens to work well under most circumstances and can be 
improved in conjunction with post-processing by an iterative 
method. Namely, for objects not too close to the detectors, 
one can think of projection lines as close to straight lines, 
and hence the circular radon transform as being close to the 
standard radon transform. In this approach, the center r of 
the projection circle and its radius p (which is proportional to 
time) are analogs of the normal coordinates (#,<;) of a line 
r- f)=s in the standard radon transform where 6 is a unit 
vector normal to the line. FBP inversion of the standard ra- 
don transform on the plane consists (up to a constant factor) 
in applying the first derivative with respect to s, then Hubert 
transform with respect to <;, and finally the backprojection 
operator, which averages over lines passing through a given 
point.15 We implement a similar procedure in the circular 
radon transform. This amounts to a differentiation with re- 
spect to the radius, a Hubert transform with respect to the 
radius, and then a circular backprojection, i.e., averaging 
over the circles passing through a given point. One should 
also make sure that during the backprojection the tangent 

Projection curve 

i     .Object 

Detector   w \&r* 
re v v 

FIG. 4. A diagram to show the uniform rotation of 8 in FBP in a circular 
radon transform or TAT. The dashed arrow represents the normal to the 
detection curve (dotted arc) at rs and the dashed line is the normal to a 
projection arc centered at rs and passing through a reconstructed point r. 8, 
is the detection view at r, i.e., the angle subtended by the detection curve as 
viewed from r. 

lines (or the normal vectors) to the projection curves at the 
given point, for example, 0 in Fig. 4, rather than the centers 
of the projection curves (which coincide with detector posi- 
tions), rotate at a constant speed. Differentiation with respect 
to the radius is already contained in the TAT data, as shown 
in Eq. (2), so this step can be simplified in 2-D reconstruc- 
tions (it is still required in a 3-D TAT). Based on this, we 
arrive in the Appendix at an approximate FBP reconstruction 
formula for the 2-D TAT, 

<p(r)< 
ßh< 
X r- 

ds 
n-(r-rg) 

|r-r,|2 H(p,(re -rl/u,) 

(5) \+P2(re,\re-r\/vs)), 

where H is a Hubert transform; p2(r,t)-vj'0pi(r,t)dt; n is 
the inward normal to the detection curve at re; ds is the arc 
length differential; and the integration is along a complete 
detection curve (i.e., the one that runs around the objects). In 
the case of incomplete data, one just replaces the missing 
data with zeros (possibly gradually phasing off the existing 
data closely to the missing data region to reduce the artifacts 
caused by the missing data) and then applies the formula. 
Although this is not an exact inversion, one can show using 
microlocal analysis that it preserves all "visible" singulari- 
ties (a conclusion supported by the numerical and experi- 
mental evidences presented below). If one is interested in 
singularities only (e.g., interfaces between different types of 
tissue), then one can drop the integral term ^2(r9.lr» 
- r\/vs) in the last formula, since it corresponds to a pseudo- 
differential operator of a smaller order. 

Let us also provide a local tomography formula for the 
2-D TAT. In order to do this we replace the Hubert transform 
by an additional time derivative. This then leads to the local 
tomography reconstruction: 

C     £     n-{r-re)ldpi       .        .     ^ A(pir)=wys r
5i^z"l^(r("|re"r|/0 

ßl0v 

x\r-re\ + 2vspi(re,\re-r\/vs) (6) 
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As before, if one wants to recover singularities only, the term 
of a lower pseudo-differential order 2vsp\ in this formula 
can be dropped. 

One can apply a similar consideration to the 3-D TAT, 
which leads to the approximate FBP formula: 

?(r)~- 
lirßhvi 

dS 
n-(r-re) 

r-r« 

^dPl(re,\re-r\/vs) | 2Pl(re,\re-r\/vs)vs 
X .. + ■ 

dt rfl-r 

(7) 

In the case of limited-angle detection, there is also the 
following possibly useful correction if one is interested in 
quantitative imaging. Here, we define a detection view 8, 
(solid angle fl/ for the 3-D case) at r, which is the (solid) 
angle subtended by the detection curve (surface) when 
viewed from the reconstruction point r as shown in Fig. 4. 
Because of the incompleteness of data, the integral in the 
above equations runs over a portion of the detection curve 
(surface) only. One might want to compensate for that by 
multiplying the value of the reconstructed function at this 
point by a factor 2 irl 0, (4 ir/O, for the 3-D case). The factor 
appears when the backprojection operator is considered ap- 
proximately as an averaging over the available projection 
curves passing through the reconstruction point r. It should 
be noted that both 6, and SI, depend on r. The effectiveness 
of this compensation is shown below by our numerical simu- 
lation results of TAT. 

There are three useful features of Eq. (5) and Eq. (7). First 
of all, they yield, as we intend to show in numerical simula- 
tions, acceptable quantitative results from limited-view data. 
Second, their computation complexity is much less than that 
for the iterative methods such as TCG, while they produce 
images of comparable quality. Finally, if an iterative method 
is necessary, our backprojection formula can serve as a good 
initial guess. This is also observed in our numerical simula- 
tions. 

Although the above backprojection formula is shown to 
work well in numerical simulations, it is not exact. Never- 
theless, one can show that it amounts to applying a pseudo- 
differential operator to the image <p (this is true if the data is 
gradually phased out near the areas of the missing data). 
Pseudo-differential operators are known not to shift locations 
of any singularities, including boundaries.19'28'30 This means 
that although the backprojection formula might give impre- 
cise values of <p, it will present the locations of the bound- 
aries of all inclusions correctly. 

Another reconstruction method is to apply an additional 
differentiation with respect to time (the radius) without ap- 
plying a Hubert transform, as shown in Eq. (6). This leads to 
a local tomography type formula.25'28 The result of the pro- 
cedure also produces an expression of the form A<p, where A 
is a pseudo-differential operator defined in Eq. (6). In this 
case, however, the operator has a positive order, which 
means that all the "visible" interfaces and other sharp details 
not only have correct locations, but also are emphasized. 

This effect is well known in image processing, where for 
instance the Laplace operator is sometimes used to empha- 
size the edges. One can also notice that our experimental 
data, due to the shape of the transducer's impulse response 
function and electromagnetic pulse shape, already carry a 
filtration that makes the reconstruction similar to the local 
one. Then, unless an appropriate deconvolution is applied to 
the data during pre-processing, the interfaces are accentuated 
in the reconstruction. The reader will notice this in our actual 
reconstructions from experimental data. 

D. Numerical implementation 

In the case of incomplete data discussed above, we com- 
plete it by concatenating with zeros (sometimes gradually 
smoothing the data to zero at the boundary in order to reduce 
the artifacts in the reconstruction). The FBP algorithm de- 
scribed above is first applied to the limited view data. Since 
the inversion formula we use is not exact even for complete 
data, we improve it by employing an iterative algebraic 
method for solving the discretized version of Eq. (2), starting 
with the FBP reconstruction as the initial guess. We adopt as 
such the TCG method for finding the least-squares solution 
of the discretized version of the problem. No preconditioner 
is used. We also employ local tomography procedure de- 
scribed above. We expect in all these methods to see the 
reconstructions that agree with the theoretical predictions 
stated in the previous section, i.e., sharp "visible" details 
with the "invisible" parts blurred. 

III. RESULTS AND DISCUSSION 

Our results consist of three parts: (1) inversion of simu- 
lated circular radon transform data to show the theoretical 
predictions about the "visible" and "invisible" boundaries, 
(2) reconstructions from simulated TAT data to test our re- 
construction algorithms quantitatively, and (3) images based 
on experimental data collected from a physical phantom. 

A. Numerical results for the limited-view circular 
radon transform 

Figure 5 shows the inversion of the circular radon trans- 
form for different detection configurations and phantoms 
(shown in the first column from the left) to demonstrate our 
discussions on the "visible" and "invisible" boundaries. In 
the second column from the left, the detection curve is 
shown as the solid part of the outer circle, the "detection 
region" is shaded, and the "visible" (solid) and "invisible" 
(dashed) boundaries of the objects predicted by theory are 
shown. The inclusion represents the object to be imaged. The 
third and fourth columns from the left show the FBP recon- 
structions and the local tomography reconstructions, respec- 
tively. Notice the good agreement between the three columns 
on the right concerning reconstructions of the "visible" and 
"invisible" parts of the boundaries. 

Figure 5(1 a-Id) shows the results for a phantom contain- 
ing a square inclusion. The data are collected from detectors 
located on the upper half-circle. Exactly the parts of the 
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FIG. 5. (la) A square phantom inside a circular detection curve in a circular 
radon transform, (lb) The diagram showing the detection curve (solid part 
of the outer circle), the "visible" (solid) and "invisible" (dashed) bound- 
aries of the object predicted by theory, and the "detection region" (shaded), 
(lc) FBP reconstruction. (Id) Local tomography reconstruction, where the 
boundary is emphasized. (2a-2d) A disk phantom outside the "detection 
region." (3a-3d) A disk phantom inside the "detection region." (4a-4d) An 
off-center disk phantom and a detection curve consisting of three arcs. (5a- 
5d) A centered disk phantom and a detection curve consisting of three arcs. 

boundary of the square predicted in this paper [see the dotted 
lines in Fig. 5(lb)] become blurred in Fig. 5(1 c) and Fig. 
5(ld). 

Figure 5(2a-2d) and Fig. 5(3a-3d) show the reconstruc- 
tions of circular inclusions from the data collected by the 
detector located along the upper half-circle. In Fig. 5(2a-2d), 
the phantom is completely outside the "detection region," 
which leads to blurring of its right and left boundaries in 
accordance with the theory. In Fig. 5(3a-3d), however, the 
boundaries of the disk are recovered sharply, since the inclu- 
sion is in the "detection region." Notice here some deterio- 
ration of the image near the detector circle. This can be at- 
tributed to the fact that near the detector circle, linear, and 
circular radon transform become noticeably different, and so 
the quality of our approximate formulas diminishes. This 
problem can be dealt with in two ways: one can make sure 
that the detectors do not approach the imaged objects too 
closely (this will be enforced in our further numerical simu- 
lations and experiments), or to improve the reconstruction 
quality by post-processing with an iterative algebraic recon- 
struction method. 

Other limited-view reconstructions from the circular ra- 
don data are shown in Fig. 5(4a-4d) and Fig. 5(5a-5d), 

FIG. 6. A diagram of inclusions in TAT (used in Fig. 7). The value of the 
image <p(r) is set to be 0.5 in the largest square and unity within other sharp 
inclusions and zero elsewhere. Inside the "soft" circular inclusion, this 
value drops linearly with the radius from unity at the center to zero at the 
interface. 

where there are three arcs of detection, 60 degrees each, with 
60 degrees intervals between them. An off-center and a cen- 
tered circular inclusion are reconstructed in Fig. 5(4a-4d) 
and Fig. 5(5a-5d), respectively. The results agree well with 
the theory: some parts of the boundary of the off-center disk 
are blurred; namely, those where the normals do not pass 
through any detector positions. However, the in-center disk 
is reconstructed sharply, in spite of the fact that it does not fit 
into the "detection region." The reason is that in this case 
every normal to the boundary of the inclusion passes through 
a detector. 

B. Reconstruction from simulated limited-view 
TAT data 

A numerical phantom that contains four sharp and one 
soft inclusions is shown in Fig. 6. Among the sharp ones we 
have one large and two small squares and one disk. The 
object value, which represents the electromagnetic energy 
deposition, is set to be 0.5 within the largest square and unity 
within other sharp inclusions and zero elsewhere. Inside the 
"soft" circular inclusion, this value drops linearly with the 
radius from unity at the center to zero at the interface in 
order to simulate a gradual interface. The imaged field of 154 
mm by 154 mm is mapped with a 128X128 mesh. The de- 
tection circle has a radius of 133 mm and is centered at the 
center of the picture. We scan 200 steps in all the simula- 
tions. The gray scale and the scale bar of the images are 
shown below the images in Fig. 7. The top row of recon- 
structions employs the local tomography formula that em- 
phasizes the boundaries. The next one uses the FBP formula, 
and the lowest one shows the improvements achieved by 
running the algebraic reconstruction method (TCG) starting 
with the FBP as an initial guess. 

The left column uses only the data collected from the IT/2 

detection arc in the first quadrant. None of the phantom in- 
clusions fits into the "detection region." One can see that all 
parts of the inclusion boundaries the normals to which do not 
intersect the detector arc are blurred (even in the local to- 
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FIG. 7. Images reconstructed from simulated TAT data 
corresponding to the phantom in Fig. 6. The three col- 
umns correspond from the left to the right to detection 
angles of 90 degrees (from 0° to 90°), 217 degrees 
(from -19° to 198° as shown by the angle Sin Fig. 6), 
and 360 degrees, respectively. The three rows corre- 
spond from top to bottom to the local tomographic re- 
construction, FBP, and FBP with the consecutive TCG, 
respectively. The values of (minimum, maximum) 
of the gray scale for (a)-(i) are (-0.8081, 1.0000), 
(-0.8302, 1.0000), (-0.7515, 1.0000), (-2.0745, 
1.7899), (-0.6385, 1.0723), (-0.1030, 1.0349), 
(-0.9284, 1.2859), (-0.0326, 1.0030), and 
(-0.0149, 1.0021), respectively. The maxima of the 
local reconstructions are normalized to unity. 

Minimum Maximum 
Energy deposition 

mography reconstruction). Other parts of the boundaries are 
sharp. This is in perfect agreement with our theoretical pre- 
diction. The soft inclusion is not significantly affected by the 
artifacts. 

The middle column employs the data collected from the 
detector arc of approximately 217 degrees (the angle 0 in 
Fig. 6), whose chord coincides with the bottom side of the 
large square inclusion. In this case all inclusions are in the 
"detection region," and hence all the boundaries are recon- 
structed sharply. The third column represents the full data 
reconstruction. Notice that the quality of the final reconstruc- 
tions in the last two columns is the same. 

Figures 8(a) and 8(b) show the reconstructed image (p(r) 
along the dashed-dotted line in Fig. 6 using the FBP [Figs. 
7(d)-7(f)] and TCG reconstructions [Figs. 7(g)-7(i)], re- 
spectively. The exact value is also shown for comparison. It 
can be found in Fig. 8(a) that the results of FBP are in good 
agreement with the real value for the case of 217-degree and 
360-degree detection, where all objects are in the "detection 
region." Iteration improves the results further as shown in 
Fig. 8(b). Even for the case of a 90-degree detection curve, 
the profile of the objects is reconstructed. Comparing (a) and 
(b), one can find that the significant overshoot and under- 
shoot in FBP can be considerably reduced by TCG iterations 
(we remind the reader that FBP is only an approximation 
rather than the implementation of an exact formula). 

C. Dependence of reconstruction on scanned 
angular range 

Figure 9 shows the relative error of each reconstruction as 
a function of the scanned angular range with respect to the 
center of the scan. We study the mean reconstruction values 
in the hard sphere, the central square, and the background. 
The errors of reconstruction are normalized to the corre- 
sponding real values in the cases of the hard sphere and the 
central square and to the real value of the hard sphere in the 

90 100 
X axis (mm) 

FIG. 8. (a) The graphs of FBP reconstructions shown in Figs. 7(d)-7(f) and 
the corresponding exact value along the dashed-dotted line in Fig. 6. (b) 
The graphs corresponding to TCG reconstructions, Figs. 7(d)-7(f), along 
the same line as in (a). 
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FIG. 9. The dependence of the relative errors of the mean values in the hard 
sphere (circle markers), the central square (square markers), and the back- 
ground (asterisks) on the scanned angular range. 

case of the background (because its real value is zero). When 
the scanned angular range is less than ir, the errors decrease 
sharply with the increasing scanned angular range. On the 
other hand, when the scanned angular range is larger than ir, 
the errors change much more slowly as the scanned angular 
range increases. The results agree with our theoretical con- 
clusions. However, there are some fluctuations added to the 
trends of the curves. By comparing the three curves in Fig. 9, 
we find that these fluctuations depend strongly on the loca- 
tion of the object with respect to the detection curve. A more 
extensive study is needed to understand these fluctuations. 
There are some residual errors even in the full-view detec- 
tion in Fig. 9. This is because we use an approximate back- 
projection algorithm, which is widely employed in experi- 
ments due to its better computation efficiency and stability 
when compared to the more accurate iteration algorithms. 

D. Experimental results 

The experimental setup is described in our previous paper 
and will not be repeated here.6 The sample and the polar 
coordinate system describing the scanning orbit are shown in 
Fig. 10(a). The sample consists of a muscle cylinder of 4 mm 
in diameter and 5 mm in length embedded in a chunk of pork 
fat of 1.2 cm in radius rf. There is a 10-mm fat layer below 
the muscle and another 7-mm one above it. An electromag- 
netic pulse is delivered to the sample from below (i.e., from 
behind the picture plane). With a scanning radius of rd 

= 7.1 cm, thermoacoustic data are collected around the 
sample over a 2ir angular span with 161 steps. As it is men- 
tioned above, the electromagnetic pulse profile and the im- 
pulse response function of the ultrasonic transducer impose a 
filter on the thermoacoustic signals. We attempted to correct 
this effect using deconvolution but found that the resulted 
images were distorted, due to the lack of precise knowledge 
of the filter. Therefore, we do not use deconvolution in the 
reconstruction. This leads, as is explained above, to some- 
what emphasized interfaces. 

Figures 10(b)-10(d) show the reconstructed images using 
FBP with three sets of data. In the first of them, we choose 
the data collected along a circular detector arc of 92 degrees 

5 mm 
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FIG. 10. (a) A photograph of the experimental sample, (b)-(d) TAT recon- 
structions using detection arcs of 92 degrees [from 50° to 142° in (a)], 202 
degrees (from -18° to 184°), and 360 degrees, respectively. The blurred 
parts of the boundaries in (b) due to the limited view agree with the theo- 
retical predictions. In (c) all the boundaries are resolved, since the object fits 
into the "detection region." 

located at the top of the picture and almost symmetric with 
respect to its vertical axes. One sees that the left and right 
boundaries of the muscle cylinder and of the pork chunk are 
blurred away, since their normal lines do not touch the de- 
tector arc, while the rest of the boundary is sharp. The next 
figure shows reconstruction obtained with the data collected 
from a 202-degree arc [which is about 180+2*asin(/y/rd) 
obtained in the same way as 6 in Fig. 6], when the whole 
phantom fits into the detection region. All boundaries are 
sharp now. Finally, the last figure shows the reconstruction 
with the full-view data. 

Notice that although no local reconstruction algorithms 
are applied, the boundaries are somewhat emphasized. The 
reason for this is the presence in the data of the impulse 
response function of the ultrasonic transducer, which has an 
effect similar to the application of an additional derivative 
with respect to the radius of the circle of integration. The 
presence of such a derivative emphasizes high frequencies 
and makes the reconstruction similar to a version of a local 
tomography algorithm. 

E. Discussion 

As mentioned above, although circular scanning is used in 
both our numerical and experimental studies, our conclu- 
sions can be applied to other configurations as well. In TAT 
with a planar configuration. 18,31-33 detections are imple- 
mented on ä part of a line or a plane where the scanning view 
is quite limited; consequently, artifacts and interface blurring 
appear in the reconstructed images. In fact, in planar and 
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linear scanning geometries one can never have an object im- 
mersed entirely into the "detection region" because the nor- 
mal lines to any interfaces that are orthogonal to the detector 
plane (line) never pass through a detector. As a consequence, 
those parts of the interfaces will be blurred in any kind of 
reconstruction. For a sufficiently large view, these parts will 
be small, but theoretically will never disappear. For example, 
2-D planar detection is utilized to image artificial blood 
vessels;18 the scanning view is about 2.18 steradians. There- 
fore, it is not surprising that only the interfaces more-or-less 
parallel to the plane of detection are well imaged. Linear 
scanning detection is used to image a 2-D phantom.32 Be- 
cause the view of the linear scsanning32 is much larger than 
that of planar scanning,18 the interfaces are recovered much 
more completely. However, due to a limited view, artifacts 
and interface blurring similar to those demonstrated in our 
numerical and experimental studies still appear in the 
images.32 

By comparing Figs. 7 and 10, we observe that the quality 
of images reconstructed from incomplete data when an ob- 
ject is in the detection region, is comparable with those from 
the full-view data. Scanning a smaller range has the advan- 
tages of reducing the scanning time or the size of the acous- 
tic transducer array. It should be pointed out that this advan- 
tage usually exists in the case when both the sample and 
medium are relatively acoustically homogeneous. When 
strong wavefront distortion caused by acoustic heterogene- 
ities occurs, it might be beneficial to collect the signal from 
all directions. 

IV. CONCLUSIONS 

It is explained theoretically what parts of the image can be 
stably recovered in the limited-view TAT. Analytic and alge- 
braic reconstruction methods are developed and applied to 
numerical phantoms and experimental data. Both numerical 
and experimental results agree perfectly with the theoretical 
conclusions. The results can be applied practically to quan- 
titative reconstructions with incomplete data, as well as to 
designing efficient scanning geometries in TAT and interpret- 
ing the obtained images. 
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APPENDIX: DERIVATION OF EQ. (5): 

Equation (2) can be rewritten as 

Pi(r,t)- 
ßh    Ry 

:
4T7C

D
'  t  ■ 

We define p2(r,t) = vj'0p1(r,t)dt. Then we have 

4irCtp2(r,t) 

ßloVs 
- = R(p. (A2) 

If the detector is not very close to the objects, we can ap- 
proximate the circular radon transform by the standard radon 
transform. The forward and inverse formulas for the standard 
radon transform are15 

m(s,0) = 

and 

/(r) = 

/ 
f(r)dr, 

1    p 2TT       dm{r-e,6) 

(A3) 

(A4) 

where H is the Hubert transform. Although the circular ra- 
don transform is different, one can write down an approxi- 
mate inversion formula modeled after Eq. (A4). By combin- 
ing an analog of Eq. (A4) with Eq. (A2), one obtains an 
approximate formula, 

C    p« .       . 
<P(r)~Tr~2\    dOU(px{rg,\re-r\lvs ßl0vs Jo 

+p2(re,\re-r\)), (A5) 

where 6 is defined as in Fig. 4. According to Fig. 4, we have 
the relation 

d0=ds 
Mr-!-,?) 
r-r, |2   > (A6) 

(Al) 

where n is the inward normal to the detection curve at re and 
ds is the arc length differential of the detection curve. After 
substituting this identity into Eq. (A5) we obtain Eq. (5). 
Equation (7) can be derived in a similar way. 
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